期刊文献+

聚醚醚酮髋股骨头假体置换术后股骨近段的力学分析 被引量:1

Strain distribution in the proximal human femur after insertion of CF/PEEK femoral stems
下载PDF
导出
摘要 [目的]探讨复合材料在全髋股骨头假体中的应用前景,旨在寻找能与股骨紧密结合、增加股骨近端应力传递的新型假体,期望进一步提高全髋关节置换术的远期疗效。[方法]5对人体新鲜尸体股骨平均分成左右2组,1组行钴铬钼合金(CoCrMo)股骨头假体置换术,另1组行碳纤维增强聚醚醚酮(CF/PEEK)假体置换术。在假体和近端股骨表面粘贴应变片,模拟单肢站立施加载荷。首先记录正常股骨产生的应变分布,然后行2种假体的股骨头置换术,再记录2组标本所产生的应变分布。[结果]股骨应变在假体植入后,从近端到远端逐渐增加,变化形式与完整股骨的应变形式相似,并且在假体远端最大。2种假体植入后,股骨内外侧表面的应变皆减少;但CF/PEEK假体组产生的应变形式和大小比CoCrMo合金假体组更接近正常股骨。[结论]CF/PEEK复合材料股骨头假体能提供术后即刻稳定性和良好的近端载荷传递,因此能进一步减少应力遮挡、骨吸收、骨萎缩,最终避免假体松动失败。 [ Objective] To develop a new femoral prosthesis that can integrate with femur compactly and increase proximal femoral stress transfer, and further improves the long-term curative effect of total hip arthroplasty. [ Method] Five pairs of human cadaver femora were divided equally into two groups one of which received a cobalt - chrome molybdemum alloy (CoCrMo) implant and the other a carbon fiber reinforced polyetheretherketone composite (CF/PEEK) implant. Six strain-gauge rosettes were attached to the external surface of each implant and proximal femora. The loading conditions simulated single - limb stance and the strains were recorded first with the femora intact and then with the femoral components of two different designs implant inserted. [ Resultl After the insertion of a femoral component, the normal pattern of a progressive proximal-to-distal increase in strains was similar to that in the intact femur and the strain was maximum near the tip of the prosthesis. On the medial and lateral aspects of the proximal femur, thc strains were reduced after implantation of both types of implant. The pattern and magnitude of the strains, however, were closer to those in the intact femur after insertion of the CF/PEEK stem than that of CoCrMo stem. [ Conclusion] Our findings suggest that the CF/PEEK stem can provide immediate postoperative stability, better proximal loading transfer in the metaphysis and further reduce stress shielding, bone resorption and osteanabrosis,thus prevent the implant from failuri.
出处 《中国矫形外科杂志》 CAS CSCD 北大核心 2006年第4期276-280,共5页 Orthopedic Journal of China
关键词 应变 股骨头假体 聚醚醚酮 复合材料 Strain Femoral prosthesis Polyetheretherketone Prosthesis stem
  • 相关文献

参考文献8

  • 1Glassman AH,Crowninshield RD,Schenck R,et al.A low stiffness composite biologically fixed prosthesis[J].Clin.Orthop,2001,393:128-136.
  • 2Turner TM,Sumner DR,Urban RM,et al.Maintenance of proximal cortical bone with use of a less stiff femoral component inhemiarthroplasty of the hip without cement:an investigation in a canine model at six months and two years[J].Bone and Joint Surg(Am),Sept.1997,79(9):1381-1390.
  • 3Krrholm J,Anderber C,Snorrason F,et al.Evaluation of a femoral stem with reduced stiffness:a randomized study with use of radiostereometry and bone densitometry[J].Bone and Joint Surg(Am),2002,84(9):1651-1658.
  • 4Katoozian H,Davy DT,Arshi A,et al.Material optimization of femoral component of total hip prosthesis using fiber reinforced polymeric composites[J].Med Eng Phys,2001,23(7):503-509.
  • 5Harvey E J,Bobyn JD,Tanzer M,et al.Effect of flexibility of the femoral stem on bone-remodeling and fixation of the stem in a canine total hip arthroplasty model without cement[J].Bone and Joint Surg(Am),1999,81(1):93-107.
  • 6Lewis JL,Askew MJ,Wixson RL,et al.The influence of prosthetic stem stiffness and of a callar collar on stresses in the proximal end of the femur with a cemented femoral component[J].J Bone Joint Surg.1984,66A:280-286.
  • 7Rohlmann A,Mossner V,Bergmann G,et al.Effects of stem design and material properties on stresses in hip endoprostheses[J].J Biomed Eng,1987,9(1):77-83.
  • 8Huiskes R,Weinans H,van Rietbergen B.The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials[J].Clin Orthop,1992,(274):124-134.

同被引文献18

  • 1胡侦明,罗先正.髋关节的生物力学[J].中华骨科杂志,2006,26(7):498-500. 被引量:31
  • 2付国太,刘洪军,张柏,韩光鹤.PEEK的特性及应用[J].工程塑料应用,2006,34(10):69-71. 被引量:51
  • 3Williams DF,McNamara A,Turner RM.Potential of polyetheretherketone(PEEK) and carbon fiber-reinforced PEEK in medical applications.J Mater Sci Lett.1987; 6:188-190.
  • 4An YH,Woolf SK,Friedman RJ.Pre-clinical in vivo evaluation of orthopaedic bioabsorbable devices.Biomaterials.2000;21(24):2635-2652.
  • 5Meyer MR,Friedman RJ,Del Schutte H Jr,et al.Long-term durability of the interface in FRP composites after exposure to simulated physiologic saline environments.J Biomed Mater Res.1994;28(10):1221.
  • 6Kurtz SM,Devine JN.PEEK biomaterials in trauma,orthopedic,and spinal implants.Biomaterials.2007;28(32):4845-4869.
  • 7Vadapalli S,Sairyo K,Goel VK,et al.Biomechanical rationale for using polyetheretherketone (PEEK) spacers for lumbar interbody fusion-A finite element study.Spine (Phila Pa 1976).2006;31(26):992-998.
  • 8Toth JM,Wang M,Estes BT,et al.Polyetheretherketone as a biomaterial for spinal applications.Biomaterials.2006;27(3):324-334.
  • 9Ponnappan RK,Serhan H,Zarda B,et al.Biomechanical evaluation and comparison of polyetheretherketone rod system to traditional titanium rod fixation.Spine J.2009;9(3):263-267.
  • 10Adams D,Williams DF.The response of bone to carbon--carbon composites.Biomaterials.1984;5(2):59-64.

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部