期刊文献+

Rough集理论在结构损伤识别中的应用 被引量:1

Structural Damage Detection Using Rough Set Theory
下载PDF
导出
摘要 提出以光纤光栅传感器为传感元件、简支板结构为研究对象、运用粗集理论对结构损伤部位进行检测识别。介绍了用Rough集理论来构建检测对象的知识表示方法,用K-均值量化算法实现连续信息离散化,采用基于Rough集的约简方法来生成目标决策规则。检验样本的实验显示出所提方法获得了满意的检测识别结果,且运算效率远高于神经网络。 For the simple supporting plank sensed by fiber bragg grating strain sensing array, an approach on structural damage detection using Rough set theory was researched. Flatly, the expression of the knowledge about the detected objects based on Rough set was presented. The K-mean algorithm was then used to disperse the continuous data. Finally, the rules for objects recognition were achieved by the reduction technology of the decision-making table to realize the structural damage detection, The experiment results demonstrated that the proposed approach had good quality in detection performance and higher operation efficiency.
出处 《武汉理工大学学报》 EI CAS CSCD 北大核心 2006年第2期90-93,共4页 Journal of Wuhan University of Technology
基金 国家自然科学基金(50179092)
关键词 ROUGH集 光纤光栅 损伤检测 Rough set fiber bragg grating damage detection
  • 相关文献

参考文献7

  • 1郑栋梁,李中付,华宏星.结构早期损伤识别技术的现状和发展趋势[J].振动与冲击,2002,21(2):1-6. 被引量:77
  • 2Nakamura M,Masri S F,Chassiakos A G.Non-parametric Damage Detection Through the Use of Neural Networks[J].Earthquake Engineering & Structural Dynamics,1998,27(9):997~1013.
  • 3吴耀军,陶宝祺.基于小波神经网络的复合材料损伤检测[J].航空学报,1997,18(2):252-256. 被引量:15
  • 4Todd M D,Johnson G A,Vohra S T.Deployment of a Fiber Bragg Grating-based Measurement System in a Structural Health Monitoring Application[J].Smart Material and Structures.2001,(10):534~539.
  • 5刘清.Rough集及Rough推理[M].北京:科学出版社,2001..
  • 6Sanjay Jha,Tariq Durrani.Direction of Arrival Estimation Using Artificial Neural Networks[J].IEEE Trans on Syst Man and Cybern,1991,21(5):318~325.
  • 7Duda Richard O,Hart Peter E,Stork David G.Pattern Classification[M].New York:John Wiley & Sons Inc,2001.

二级参考文献6

共引文献449

同被引文献7

  • 1曾黄麟.智能计算[M].重庆:重庆大学出版社,2004..
  • 2刘清.Rough集及Rough推理[M].北京:科学出版社,2001..
  • 3Jiang S F,Zhang C M,Koh C G.Structural damage detection by integrating data fusion and probabilistic neural network[J].Advances in Structural Engineering,2006,9(4):445-458.
  • 4Ahn B S,Cho S S,Kim C Y.The integrated methodology of rough set theory and artificial neural network for business failure prediction[J].Expert Systems with Applications,2000,18:65-74.
  • 5Hou Z J,Lian Z W,Yao Y,et al.Cooling-load prediction by the combination of rough set theory and artificial neural-network based on data-fusion technique[J].Applied Energy,2006,83:1033-1046.
  • 6葛继科 余建桥 张帆 等.改进的K-均值聚类算法.计算机科学,2003,31(9):254-256.
  • 7Specht D F.Probabilistic neural network[J].Neural Networks,1990,3:109-118.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部