摘要
X是Banach空间,(X,τ)是局部凸线性拓扑空间,C是X上的τ-序列紧凸集,T是C上的渐近非扩张映照并且具有性质(Γ).在一致τ-opial条件下给出了渐近非扩张映照的遍历收敛定理并进行了证明.该结论首次在Banach空间中给出了遍历收敛定理,因而定理推广了近期相关的一系列研究成果.
Let X be a Banach space, (X,τ) a local convex linear topological space, C a τ-sequence compact convex subset of X, and T an asymptotically nonexpansive mapping with the property (P) from C to itself, we give the ergodic convergence theorem for asymptotically nonexpansive mapping under uniformly τ-opial condition. Result presented in this paper is the first ergodic convergence theorem in Banach space; therefore it further expands recent related results in other researches.
出处
《淮海工学院学报(自然科学版)》
CAS
2005年第4期1-5,共5页
Journal of Huaihai Institute of Technology:Natural Sciences Edition
基金
国家自然科学基金资助项目(10171087)