期刊文献+

定常温度热弹性梁的精化理论 被引量:13

A REFINED THEORY OF THERMOELASTIC BEAMS UNDER STEADY TEMPERATURE
下载PDF
导出
摘要 首先给出了定常温度热弹性Biot通解的一种新的简化形式,它看起来与各向同性弹性力学的Papkovich-Neuber通解十分相似。不作预先假设,从热弹性理论出发,利用Biot通解和Lur’e算子方法构造了梁的精化理论,得出了自由表面热弹性梁的三个精确方程:四阶方程、超越方程和温度方程。由一般的各向同性弹性梁推广到热弹性梁,导出了在反对称载荷和介质温度作用下热弹性梁的近似控制微分方程。 A new simplified form of Biot's thermoelasticity it looks like Papkovich-Neuber's isotropic elasticity solution. solution is presented under steady temperature, and Based on thermoelasticity theory, the refined beam theory is derived using Biot's solution and Lur'e method without ad hoc assumptions. For homogeneous boundary conditiofis, the thermoelastic beam equations consist of three exact equations: the four-order equation, the transcendental equation and the temperature equation. Generalized from isotropic elastic beam problems, thermoelastic beam problems are focused. Approximate beam equations under anti-symmetrical transverse loadings and temperature distribution are derived.
作者 高阳 王敏中
出处 《工程力学》 EI CSCD 北大核心 2006年第2期34-40,共7页 Engineering Mechanics
基金 国家自然科学基金资助项目(1017200310372003)
关键词 热弹性 控制方程 精化理论 矩形直梁 弹性通解 thermoelasticity governing equation refined theory rectangular beam elastic general solution
  • 相关文献

参考文献15

  • 1Biot M A. Thermoelasticity and irreversible thermodynamics [J]. J Appl Phys, 1956, 27: 240-253.
  • 2Vetruijt A. The completeness of Biot's solution of the coupled thermoelastic problem [J]. Q Appl Math, 1969,26(4): 485-490.
  • 3青春炳,王敏中.热弹性通解完备性的一个新证明[J].应用力学学报,1989,6(4):80-82. 被引量:7
  • 4Boley B A, Weiner J H. Theory of Thermal Stresses [M].New York: John Wiley and Sons, 1960.
  • 5Barrekette E S. Thermoelastic stresses in beam [J].ASME J Appl Mech, 1960, 27: 465-473.
  • 6Shieh R C. Eigensolutions for coupled thermoelastic vibrations of Timoshenko beams [J]. ASME J Appl Mech,1979, 46(1): 169-174.
  • 7Massalas C V, Kalpakidis V K. Coupled thermoelastic vibrations of a Timoshenko beam [J]. Int J Eng Sci, 1984,22(4): 459-465.
  • 8Cheng S. Elasticity theory of plates and a refined theory[J]. ASME J Appl Mech, 1979, 46(2): 644-650.
  • 9Lur'e A I. Three-Dimensional Problems of the Theory of Elasticity [M]. New York: Interscience, 1964. 148-152.
  • 10赵宝生,王敏中.弹性板中精化理论与分解定理的等价性[J].应用数学和力学,2005,26(4):447-455. 被引量:16

二级参考文献12

  • 1青春炳,王敏中.热弹性通解完备性的一个新证明[J].应用力学学报,1989,6(4):80-82. 被引量:7
  • 2王飞跃.横观各向同性板的弹性精化理论[J].上海力学,1985,6(2):10-21.
  • 3CHENG Shun. Elasticity theory of plates and a refined theory[ J]. Journal of Application Mechanics,1979,46(2) :644-650.
  • 4Lur'e A I. Three-Dimensionol Problems in the Theory of Elasticity[M].New York: Interscience,1964,148-166.
  • 5Gregory R D. The general form of the three-dimensional elastic field inside an isotropic plate with free faces[J]. Journal ofElasticiy, 1992,28( 1 ): 1-28.
  • 6Gregory R D. The semi-infinite stripx ≥ 0, - 1 ≤ y ≤ 1; completeness of the Papkovich-Fadle eigenfunctions when φxx ( 0, y), φyy (0, y ) are prescribed[ J ]. Journal of Elasticity, 1980,10( 1 ): 57-80.
  • 7Gregory R D. The traction boundary value problems for the elastostatic semi-infinite strip; existenceof solution, and completeness of the Papkovich-Fadle eigenfunctions [ J ]. Journal of Elasticity,1980,10(3 ): 295-327.
  • 8WANG Min-zhong, ZHAO Bao-sheng. The decomposed form of the three-dimensional elastic plate[J]. Acta Mechanica,2003,166(3): 207-216.
  • 9WANG Min-zhong,wANG W ei. Completeness and nonuniqueness of general solutions of transversely isotropic elasticity[J]. International Journal of Solids and Structures, 1995,32(3/4) :501-513.
  • 10WANG Wei, WANG Min-zhong. Constructivity and completeness of the general solutions in elastodynamics[J]. Acta Mechanica, 1992,91( 1 ) :209-214.

共引文献24

同被引文献57

引证文献13

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部