期刊文献+

多通道ARMA信号的三种多传感器信息融合Wiener滤波器 被引量:2

Three kinds of Multisensor Information Fusion Wiener Filters for Multichannel ARMA Signals
下载PDF
导出
摘要 应用现代时间序列分析方法,基于ARMA新息模型、白噪声估值器和观测预报器,对带白色观测噪声的多通道ARMA信号,在线性最小方差最优信息融合准则下,提出了统一的和通用的按矩阵加权、按标量加权和按对角阵加权的多传感器信息融合Wiener滤波器,可统一处理滤波、平滑和预报问题.提出了计算局部估计误差方差和协方差的公式,它们被用于计算最优加权.同单传感器情形相比,可提高滤波精度.一个目标跟踪仿真例子说明了其有效性,且说明了三种加权融合滤波器的精度无显著差异,因而利用按标量加权融合滤波器以轻微的精度损失提供一种快速融合估计算法,便于实时应用. Using the modern time series analysis method, based on the autoregressive moving average (ARMA) innovation model, white noise estimator and measurement predictor, under the linear minimum variance optimal fusion criterion, unified and general multisensor information fusion Wiener filters weighted by matrices, scalars and diagonal matrices are respectively presented for the multichannel ARMA signals with white observation noise. They can handle the fused filtering, smoothing and prediction problems in a unified framework. The formulas of computing variances and covariances among local estimation errors are presented, which are applied to compute the optimal weights. Compared with the single sensor case, the accuracy of the filters is improved. A simulation example for the target tracking system shows its effectiveness, and shows that the accuracy distinction for three weighted fusion filters is not obvious, so that employing the fused filter weighted by scalars provides a fast fused estimation algorithm with a slight loss of accuracy, and it is suitable for real time applications.
出处 《信号处理》 CSCD 北大核心 2006年第1期9-14,共6页 Journal of Signal Processing
基金 国家自然科学基金资助项目(60374026)
关键词 多通道ARMA信号 多传感器信息融合 线性最小方差最优融合 WIENER滤波器 Multichannel ARMA signal multisensor information fusion linear minimum variance optimal fusion Wiener filter
  • 相关文献

参考文献6

  • 1Y. Bar-Shalom, X. R. Li. Multitarget - Multisensor Traking : Principles and Techniques Stores, CT : YBS Pubblishing, 1995.
  • 2S. L Sun, Z. L Deng. Multi-sensor optimal information fusion Kalman filter Automatica, 2004, 40:10 (7 - 1023) 4 (5),334 - 336.
  • 3H. K. Kim, Development of track fusion algorithm, Proceedings of the American control conferance, Malyland, June,1994,1037 - 1041.
  • 4孙书利,邓自立.多传感器线性最小方差最优信息融合估计准则[J].科学技术与工程,2004,4(5):334-336. 被引量:31
  • 5S. L. Sun, Z.L. Deng. Muli-sensor information fusion white noise filter weighted by scalars based on Kalman predictor. Automatic, 2004,40 : 1447 - 1453.
  • 6高媛,白敬刚,邓自立.多传感器单通道信息融合Wiener滤波器[J].科学技术与工程,2004,4(7):522-525. 被引量:11

二级参考文献3

  • 1[1]Carlson N A. Federated square root filter for decentralized parallel processes. IEEE Trans Aerospace and Electronic Systems, 1990; 26(3) :517-525
  • 2[2]Kim K H. Development of track to track fusion algorithm. Proceeding of the American Control Conference, Maryland, June 1994: 1037-1041
  • 3孙书利,崔平远.多传感器标量加权最优信息融合稳态Kalman滤波器[J].控制与决策,2004,19(2):208-211. 被引量:52

共引文献39

同被引文献20

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部