期刊文献+

阵列存在未知有界扰动的鲁棒加权子空间拟合

Robust Signal Subspace Fitting for Unknown But Bounded Array Perturbation
下载PDF
导出
摘要 由于阵列响应难于精确标定,因此,阵列信号处理算法的性能不仅受测量噪声的影响同时还受阵列响应扰动的影响。信号回波方向估计DOA受该系统扰动的影响很大。以往的研究均将模型的扰动假设为随机误差,且往往假设扰动是相关矩阵已知的高斯分布。然而,实际系统误差很难满足这一假设。模型误差的更合理的假设是未知有界(UBB)的假设,这里,研究模型扰动是未知有界时,信号的DOA估计问题,提出了鲁棒的信号子空间拟合原理,并用二次锥规划来求解。数值仿真表明该算法是有效的。 For the array cannot be perfectly calibrated, the limiting factor in the performance of array signal processing algorithms is most often not measurement noise but rather perturbations in the array response model. Depending on the size of such errors, estimates of the directions of arrival (DOA' s) may be significantly degraded. A number of techniques have been considered for improving the robustness of array processing algorithm. These techniques have assumed the model errors are stochastic, and can be drawn from some known a priori distribution. But in certain case, they are not, the reasonable assume is the perturbations is unknown but hounded (UBB). An robust signal subspace fitting algorithm for estimation of the directions of arrival is proposed in the case of general array errors. Numerical experiments verifies the effectiveness of the algorithm.
作者 黄勇 李宇
出处 《信号处理》 CSCD 北大核心 2006年第1期110-113,共4页 Journal of Signal Processing
基金 声纳技术国防科技重点实验室"阵元位置不确实条件下阵处理技术研究"项目资助 编号:51446070204ZK0204
关键词 阵列信号处理 DOA估计 未知有界扰动 鲁棒估计 二次锥规划 array signal processing estimate (DOA) the unknown but bounded perturbation robust estimation second order cone programming.
  • 相关文献

参考文献4

  • 1M. Jansson, A. L. Swindlehurst, B. Ottersten,“Weighted Subspace Fitting for General Array Error Models”,IEEE Transactions on Signal Processing, Vol. 46, No. 9,pp. 2484 - 2498, 1998.
  • 2M. Viberg, A. L. Swindlehurst,“A Bayesian Approach to Auto- Calibration for Parametric Array Signal Processing”, IEEE Transactions on Signal Processing, Vol. 42,No. 12, pp. 3495-3507, 1994.
  • 3M. S. Lobo, L. Vandenberghe, S. Boyed, H. Lebret,“Applications of Second - order Cone Programming”, Linear Algebra Applicat. , PP. 193-228, Nov. 1998.
  • 4S. A. Vorobyov, A. B. Gershman, Z. Luo,“Robust Adaptive Beamforming Using Worst-Case Performance Optimization: A Solution to the Signal Mismatch problem”,IEEE Transactions on Signal Processing, Vol. 51, No. 2,pp. 313-324, 2003.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部