期刊文献+

基于随机博弈的Agent协同强化学习方法 被引量:4

A Cooperative Reinforcement Learning Method Based on the Stochastic Game in Multi-Agent Systems
下载PDF
导出
摘要 本文针对一类追求系统得益最大化的协作团队的学习问题,基于随机博弈的思想,提出了一种新的多Agent协同强化学习方法。协作团队中的每个Agent通过观察协作相识者的历史行为,依照随机博弈模型预测其行为策略,进而得出最优的联合行为策略。 This paper aims at the learning process of a kind of cooperative teams, which pursue the maximum benefit of a whole system. We propose a new cooperative reinforcement learning method based on the stochastic game in multi-agent systems. Each agent of the team decides its behaviors after forecasting the behavior strategy of acquaintances according to the stochastic game structure and their historical behaviors, and then a jointly optimal behavior strategy is obtained.
出处 《计算机工程与科学》 CSCD 2006年第2期107-110,共4页 Computer Engineering & Science
基金 国家自然科学基金资助项目(70371008)
关键词 强化学习 多AGENT系统 随机博弈 协作 reinforcement learning multi-agent system stochastic game cooperation
  • 相关文献

参考文献10

  • 1S Sen, G Weiss. Learning in Multi-Agent Systems[A]. G Weiss, ed. Multi-Agent Systems [M]. The MIT Press,1999.
  • 2Peter Stone, Manuela Veloso. Multi-Agent Systems: A Survey from a Machine Learning Perspective [J]. Autonomous Robots, 2000,8(3): 345-383.
  • 3Leslie Pack Kaelbling, Michael L Littman, Andrew W Moore. Reinforcement Learning: A Survey [J]. Journal of Artificial Intelligence Research,1996,4: 237-285.
  • 4Michael Bowling, Manuela Veloso. An Analysis of Stochastic Game Theory for Multi-Agent Reinforcement Learning[R]. Technical Report CMU-CS-00-165, CMU, 2000.
  • 5C Watkins,P DayarL Q-learning [J]. Machine learning, 1992(3/4),8:279-292.
  • 6Michael L Littman. Markov Games as a Framework for Multi-Agent Reinforcement Learning [A]. Proc of the Eleventh Int'1 Conf on Machine Learning[C]. 1994. 157-163.
  • 7Junling Hu, Michael P Wellman. Multi-Agent Reinforcement Learning: Theoretical Framework and an Algorithm[A]. Proc of the 5th Int'1 Conf on Machine Learning[C].1998. 242-250.
  • 8Dov Monderer. Fictitious Play Property for Games with identical interest[J]. Journal of Economic Theory, 1997,68(1):258-265.
  • 9M Benda, V Jagannathan,R Dodhiawala. On Optimal Cooperation of Knowledge Sources: An Empirical Investigation[M]. Boeing Computing Services, 1986.
  • 10Michael Bowling. Convergence Problems of General-Sum Multi Agent Reinforcement Learning [A]. Proc of the 17th Int'1 Conf on Machine Learning[C]. 2000. 89-94.

同被引文献28

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部