期刊文献+

一种基于多时间粒度的数据流建模方法 被引量:2

Data Stream Modeling Method Using Multiple Time Granularities
下载PDF
导出
摘要 在很多领域中,越来越多的数据以数据流的形式存在于各种应用当中,这些数据的特点是实时的、连续的、时变的、快速的。由于这些特点,在数据处理方法上引入了很多挑战性问题。本文重点从多时间粒度的角度研究了数据流建模问题,提出了多时间粒度的数据流滑窗建模方法,采用层次窗口模型对数据流进行描述,有效解决了Ad-Hoc查询中的历史数据管理问题。 In many applications, data not only take the form of persistent relations. but also arrives in a real-time, continuous, time-varying and rapid way. Because of these characteristics, many challenging issues are introduced in data processing. The purpose of this paper is to study the issues of data stream modeling, and we present the approach of sliding window modeling using multiple time granularities, and characterize data streams by a hierarchical windows model. And it also proves to be effective in solving the problem of historical data management of ad-hoc queries.
出处 《计算机工程与科学》 CSCD 2006年第2期111-114,共4页 Computer Engineering & Science
关键词 数据流模型 多粒度 滑窗 data stream model multiple granularities sliding window
  • 相关文献

参考文献5

  • 1M Datar, A Gionis, P Indyk,et al. Maintaining Stream Statistics over Sliding Windows[A]. Proc of the 2002 Annual ACM-SIAM Syrup on Discrete Algorithms[C]. 2002. 635-644.
  • 2L Golab, M T Ozsu. Issues in Data Stream Management[J].SIGMOD Record, 2003,32(2): 5-14.
  • 3Y Zhu, D Shasha StatStream: Statistical Monitoring of Thousands of Data Streams in Real Time[A]. Proc of the 28th Int'1 Conf on Very Large Data Bases[C]. 2002. 358-369.
  • 4C Bettini, C E Dyreson, W S Evans, et al. A Glossary of Time Granularity Concepts[A]. Temporal Databases: Research and Practice. Lecture Notes in Computer Science 1399[C]. 1998. 406-413.
  • 5B Babcock, S Babu, M Datar, et al. Models and Issues in Data Stream Systems[A]. PODS[C]. 2002.

同被引文献42

  • 1潘云鹤,王金龙,徐从富.数据流频繁模式挖掘研究进展[J].自动化学报,2006,32(4):594-602. 被引量:34
  • 2战立强,刘大昕.基于概念格的频繁闭项集增量挖掘算法研究[J].哈尔滨工程大学学报,2007,28(2):194-197. 被引量:2
  • 3宋旭东,翟坤,刘晓冰.基于图论的频繁闭项集挖掘[J].微电子学与计算机,2007,24(8):28-30. 被引量:1
  • 4Han J W,et al.Frequent pattern mining:Current status and future directions[J].Data Mining and Knowledge Discovery,2007,15(1):55-86.
  • 5Cheng J,et al.A survey on algorithms for mining frequent itemsets over data streams[J].Knowledge and Information Systems,2008,16(1):1-27.
  • 6Agrawal R,et al.Fast algorithms for minging association rules[A].Proceedings of the 20th International Conference on Very Large Data Bases[C].San Francisco:Morgan Kaufmann Publisher,1994.
  • 7Han J,et al.Mining frequent patterns without candidate generation[A].Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data[C].Dallas:ACM,2000.
  • 8Pasquier N,et al.Discovering frequent closed itemsets for association rules[A].In Proceeding of the 7th International Conference on Database Theory[C].Israel:Springer,1999.
  • 9Pei J,et al.CLOSET:An efficient algorithm for mining frequent dosed item sets[A].Proceedings of ACMSIGMOD Workshop On Research Issues in Data Mining and Knowledge Discovery[C].Dallas:ACM,2001.
  • 10Burdick D,et al.MAFIA:A maximal frequent itemset algorithm for transactional databases[A].Proceedings of 17th International Conference on Data Engineering[C].Heidelberg:IEEE,2001.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部