期刊文献+

金催化合成硫化锌纳米线及其发光性质的研究

Au catalytic growth and photoluminescence of zinc sulfide nanowires
下载PDF
导出
摘要 采用金催化和直接蒸发ZnS粉末的方法,合成出大量具有纤锌矿结构的单晶ZnS纳米线。该纳米线的线径均匀,线形规则,直径在80-120nm,长度约几十微米。研究发现纳米线的形貌对合成的温度很敏感,合成温度的升高会导致纳米线直径的迅速增加。单根纳米线EDS分析表明,ZnS纳米线线体中均匀分布着Au元素,Au元素的掺入是纳米线生长形成后由端部颗粒通过固态扩散进入纳米线中。室温光致发光谱显示:ZnS纳米线有两个发光峰,分别位于446nm和520nm处。446nm的发光峰是由缺陷所致,而520nm左右的发光峰是由Au元素掺杂所致。 Single-crystalline ZnS nanowires with the structure of wurtzite have been synthesized in large-scale by direct evaporation of ZnS powders in the presence of Au film, The nanowires are tens of micrometers in length and 80-120 nm in diameter. The research result shows that the morphology of ZnS nanowires is sensitive to the growth temperature. Higher growth temperature caused rapid increase in the diameter of ZnS nanowires. EDS spectra shows that the Au atom exists in both the body and the tip of as-synthesized ZnS nanowires. The doped Au atom in the nanowire body is tentatively attributed to solid diffusion from the catalytic droplet after the growth process. When excited with a 325 nm ultraviolet light,the nanowires emit light with peaks at 446 nm and about 520 nm which are caused by the defect and the doped-Au atom, respectively.
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第2期147-150,共4页 Journal of Hefei University of Technology:Natural Science
基金 国家自然科学基金资助项目(20471019) 安徽省自然科学基金资助项目(050440904)
关键词 ZNS纳米线 发光性能 Au元素分布 ZnS nanowire photoluminescence Au distribution
  • 相关文献

参考文献12

  • 1Du G H,Van Tendeloo G.Cu (OH)2 nanowires,CuO nanowires and CuO nanobelts[J].Chem Phys Lett,2004,393(1/3):64-69.
  • 2Jiang Xuchuan,Xie Yi,Lu Jun,et al.Simultaneous in situ formation of ZnS nanowires in a liquid crystal template by γ-irradiation[J].Chem Mater,2001,13:1213-1218.
  • 3Li Quan,Wang Chunrui.Fabrication of wurtzite ZnS nanobelts via simple thermal evaporation[J].Appl Phys Lett,2003,82:359-361.
  • 4Liu D F,Xie S S,Yan X Q,et al.A simple large-scale synthesis of coaxial nanocables:silicon carbide sheathed with silicon oxid[J ] Chem Phys Lett,2003,375 (3/4):269-272.
  • 5吴强,胡征,王喜章,杨勇,陈懿.孔性氧化铝模板与一维纳米新材料的制备[J].无机化学学报,2002,18(7):647-653. 被引量:10
  • 6张振华,彭景翠,陈小华,王健雄.非掺杂金属型碳纳米管的电导特性[J].无机材料学报,2001,16(5):940-944. 被引量:1
  • 7杨曜源,李卫,张力强,蔡以超,王向阳,肖红涛,田鸿昌,东艳萍,方珍意,郝永亮.ZnS晶体的化学气相沉积生长[J].人工晶体学报,2004,33(1):92-95. 被引量:10
  • 8Yuan H J,Xie S S,Liu D F,et al.Formation of ZnS nanostructures by a simple way of thermal evaporation[J].Journal of Crystal Growth,2003,258:225-231.
  • 9Wanger R S,Ellis W C.Vapor-liquid-solid mechanism of single crystal growth[J].Appl Phys Lett,1964,4:89-94.
  • 10Wang Y W,Zhang L D,Liang C H,et al.Catalytic growth of semiconducting zinc oxide nanowires and their photoluminescence properties[J].Chem Phys Lett,2002,357 (3/4):314-318.

二级参考文献50

  • 1Keller F., Hunter M. S., Robinson D.L. J. Electrochem.Soc., 1953, 100(9), 411.
  • 2Hernandez A., Martinez F., Martin A. et al J. Colloid Interface Sci., 1995, 173,284.
  • 3Alfonso M.J., Menendez M., Santamaria J. CatalysisToday, 2000, 56,247.
  • 4Dell T., Hochberg M., Barsic D. et al Sensors and Actuators, 2000, 87, 52.
  • 5Lazarouk S., Katsouba S., Deimanovich A. et al Solid-State Electronics, 2000, 44, 815.
  • 6Pontifex G. H., Zhang P., Haslett T.L. et al J. Phys. Chem., 1991, 95, 9989.
  • 7Foss C. A., Hornyak G. L., Stockert J. A., Martin C. R. J. Phys. Chem., 1992, 96, 7497.
  • 8Brumilik C. J., Martin C. R. J. Am. Chem. Soc., 1991,113, 3174.
  • 9Che G., Miller S. A., Fisher E. R., Martin C.R. Anal.Chem., 1999, 71, 3187.
  • 10Routkevitch D., Bigioni T., Moskovits M. et al J. Phys. Chem., 1996, 100, 14037.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部