期刊文献+

基于MOGA和SVM的发酵过程建模 被引量:3

Modeling of Fermentation Process Based on MOGA and SVM
下载PDF
导出
摘要 针对微生物发酵过程,使用多目标遗传算法(mu lti-ob jective genetic algorithm,MOGA)确定最优参数.MOGA和SVM回归相结合形成一种新的建模方法,该方法利用现场生产数据建立了青霉素效价预估模型.仿真结果表明此方法具有很强的拟合和泛化能力.MOGA方法的有效性也得到了验证,它也能够自动选择最优参数. Multi-objective genetic algorithm (MOGA) is used to determine the optimal parameters of the microbial fermentation process. A new modeling method that combines MOGA with support vector machine (SVM) regression is presented, with which the penicillin titer pre-estimation model is developed with data collected from real plant. Simulation results show that this method possesses strong capability of fitting and generalization. The effectiveness of MOGA is validated, and it can select parameters automatically.
出处 《信息与控制》 CSCD 北大核心 2006年第1期12-15,共4页 Information and Control
基金 教育部科学技术研究重点资助项目(203002) 北京市教育委员会科技发展计划面上资助项目(KM200510005026)
关键词 支持向量机 多目标遗传算法 青霉素发酵 建模 support vector machine (SVM) multi-objective genetic algorithm (MOGA) penicillin fermentation modeling
  • 相关文献

参考文献10

  • 1Becker T,Enders T,Delgado A.Dynamic neural networks as a.tool for the online optimization of industrial fermentation[J].Bioprocess and Biosystems Engineering,2002,24(2):347~354.
  • 2Narendra K S,Parthasarathy K.Identification and control of dynamic systems using neural network[J].IEEE Transactions on Neural Networks,1990,1 (1):4~27.
  • 3Vapnik V N.The Nature of Statistical Learning Theory[M].New York:Springer-Verlag,1995.12~38.
  • 4Vapnik V N.An overview of statistical learning theory[J].IEEE Transactions on Neural Networks,1999,10(5):988 ~999.
  • 5Guo G D,Li S Z,Chan K L.Support vector machines for face recognition[J].Image and Vision Computing,2001,19 (9):631 ~ 638.
  • 6Cao L J,Tay F E H.Support vector machines with adaptive parameters in financial time forecasting[J].IEEE Transitions on Neural Networks,2003,14(6):1506 ~ 1518.
  • 7Shevade S K,Keerthi S S,Bhattacharyya C,et al.Improvements to the SMO algorithm for SVM regression[J].IEEE Transactions on Neural Networks,2000,11 (5):1188 ~1193.
  • 8马勇,黄德先,金以慧.基于支持向量机的软测量建模方法[J].信息与控制,2004,33(4):417-421. 被引量:37
  • 9Murata T,Ishibuchi H,Tanaka H.Multi-objective genetic algorithm and its applications to flowshop scheduling[J].Computers and Industrial Engineering,1996,30(4):957 ~968.
  • 10Mansouri S A.A multi-objective genetic algorithm for mixedmodel sequencing on JIT assembly lines[J].European Journal of Operational Research,2005,167 (3):696~716.

二级参考文献6

  • 1朱国强,刘士荣,俞金寿,.基于支持向量机的数据建模在软测量建模中的应用[J].华东理工大学学报(社会科学版),2002,17(S1):6-10. 被引量:8
  • 2Morris A J,Montague G A,Tham M T. Soft-sensors in industrial process control [ A ]. Applied Developments in Process Control[C]. London, UK:1989. 1 -3.
  • 3Vapnik V N. The Nature of Statistical Learning Theory [ M]. New York: Springer-Verlag, 1995.
  • 4Willis M J, Di M C, Montague G A,et al. Artificial neural networks in process engineering [ J ]. Control Theory and Applications,1991,138(3) :256 -266.
  • 5Gunn S R. Support Vector Machines for Classification and Regression [ R]. UK: University of Southampton, 1997.
  • 6张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2272

共引文献36

同被引文献22

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部