期刊文献+

小波自适应比例改进算法在图像去噪中的应用 被引量:7

Image denoising using improved adaptive proportion-shrinking algorithm in Wavelet field
下载PDF
导出
摘要 为了改善图像质量和便于识别、压缩等处理,图像去噪是必不可少的过程。提出一种改进的小波比例萎缩去噪算法,摒弃单一根据功率谱构造萎缩函数的方法,在函数式中加入自适应阈值策略。利用局部信号与噪声的小波系数方差比确定阈值,具有局部适应性强,重建误差小的特点。Matlab仿真实验在原始图像加入N(0,202)白噪声,去噪后图像均方误差减小226,峰值信噪比提高了3.722dB;而且重建图像视觉效果更好,并能保持图像边缘细节。 To improve the quality of image and facilitate image further processing - recognition, compression and so on, it is necessary to denoise image. An improved proportion-shrinking algorithm in wavelet denoising was proposed, in which a threshold strategy was added to proportion-shrinking algorithm instead of simplex strategy of signal power. The threshold was educed according to the square error ratio of wavelet coefficient of local signal and noise. It has a good locally adaptive adaptability and a characteristic of less reconstruction error. The N(0, 20^2) Gaussian white noise is added to the original image for MATLAB simulation. Results show the MSE (mean square error) of the denoised image can decrease 226 and the PSNR is improved by 3.722dB. The reconstructed image has better visual effect with clear edge information.
出处 《光电工程》 EI CAS CSCD 北大核心 2006年第1期81-84,102,共5页 Opto-Electronic Engineering
基金 吉林省科学技术委员会自然科学基金项目(20000544)
关键词 图像去噪 小波变换 比例萎缩法 峰值信噪比 像值改善 Image denoising Wavelet transform Proportion-shrinking algorithm PSNR Image quality improvement
  • 相关文献

参考文献5

  • 1GROSSMAN A.Wavelet transform and edge detection,Stochastic process in physics and engineering[M].Dodrecht:Reidel Pub.Co,1986.128-145.
  • 2DONOHO D L,JOHNSTONE I M.Adapting to unknown smoothness via wavelet shrinkage[J].Journal of the American StatisticalAssociation,1995,90(12):1200-1224.
  • 3MIHCAK M K,KOZINTSEV I,RAMCHANDRAN K,et al.Low-complexity image denoising based on statistical modeling of wavelet coefficient[J].IEEE Trans.On Signal Processing,1999,6(12):300-303.
  • 4MIHCAK M K,KOZINTSEV I,RAMCHANDRAN K.Spatially adaptive statistical modeling of wavelet image coefficients and its application to denoising[J].IEEE Int.Conf.Acoustics,Speech and Signal Proc,Phoenix,AZ,1999,6:3253-3256.
  • 5CHING P C,SO H C,WU S Q.On wavelet denoising and its application to time delay estimation[J].IEEE Trans.Signal Processing,1993,47(10):2879-2882.

同被引文献82

  • 1习景,徐造林.基于GIS的航道信息管理系统设计与实现[J].计算机技术与发展,2006,16(1):173-175. 被引量:6
  • 2秦伟,朱清科,张学霞,李文华,方斌.植被覆盖度及其测算方法研究进展[J].西北农林科技大学学报(自然科学版),2006,34(9):163-170. 被引量:184
  • 3Mihcakmk,Kointser Z,Ramchandran K.Spatialiy adaptire statistical modeling of mavelet image coeffitnts and its application to denoising [C].IEEE Informational coference on acoudtics speech and signal processing washington,DC:IEEE society,1999:3233-3256.
  • 4Marian Kazubek. Wavelet domain image denoising by thresholding and Wiener filtering [J]. IEEE Signal Processing Letters, 2003, 10(11): 324-326.
  • 5Chang S,Yu B, Vetterli M. Adaptive wavelet thresholding for image denoising and compression [J]. IEEE Ttransaction on Image Processing, 2000,9(9) : 1532- 1546.
  • 6Zhai J H, Zhang S F. Image denoising via wavelet threshold: single wavelet and multiple wavelets transform [J]. In Proc. International Conference on Machine Learning and Cybernetics, 2005(5) :3232-3236.
  • 7Mohideen S K, Perumal S A, Sathik M M. Image De-noising using Discrete Wavelet transform[J]. DCSNS International Journal of Computer Science and Network Security,2008 (8) :213-216.
  • 8Donoho D L, Johnstone I M. Ideal spatial adaptation via wavelet shrinkage[J]. Biometrika, 1994, 81: 425-455.
  • 9DONOHO D L, JOHNSTONE I M. Adapting to Unknown Smoothness via Wavelet Shrinkage[J].Journal of the American Statistical Association, 1995, 90(12):1200-1224.
  • 10MIHCAK M K, KOZINTSEV I, RAMCHANDRANK. Low-complexity Image Denoising based on Statistical Modeling of Wavelet Coefficient[J].IEEE Trans On Signal Processing, 1999,6(12): 300-303.

引证文献7

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部