期刊文献+

对喷流除尘技术在收集硫酸铵和硝酸铵粉尘中的应用研究 被引量:9

Application of impinging stream to collecting ammonia sulfate and ammonium nitrate dust particles
下载PDF
导出
摘要 对喷流除尘技术利用粉尘颗粒在撞击区内来回振荡、相互碰撞并团聚的机理进行除尘。实验采用水平式对喷流除尘系统收集硫酸铵和硝酸铵的混合物粉尘,主要考察喷嘴气流速度、含尘浓度和喷雾化水润湿含尘气流对除尘效率的影响,并进行机理分析。实验表明,除尘效率随喷嘴风速的增大而升高,但喷嘴风速超过25~27m/s后,反而下降;除尘效率随含尘浓度的增加而升高,但含尘浓度超过0.45~0.55kg/m3后反而有所降低;喷雾化润湿含尘气流能显著提高除尘效率,最优耗水量为0.18~0.22kg/kg粉尘,超过该值后无显著变化。实验确定的最优除尘条件为:喷嘴速度25~27m/s、含尘浓度0.45~0.55kg/m3、耗水量0.18~0.22kg/kg粉尘,除尘效率最高可达96.8%。 The present paper aims to introduce its author's study on the application of the technology of dust collection in impinging stream to collecting dust particles oscillating in the impinging area hoping to enhance the chance of collision and removing efficiency, As a result, the author has developed a type of plane impinging stream dust collection system to collect the mixture dust particles of ammonium sulfate and ammonium nitrate in experiment. So far as we know, there are three main reasons that account for the efficiency of dust collection, that is, the flow velocity of the nozzle, the density of the dust particles in air flow and the wetting dusty air flow. Experiments have shown that the efficiency of dust collection increases when the velocity of nozzle flow first of all rises and then decreases when the velocity exceeds 25-27 m/s approximate. The efficiency increases as the density of dust particles in air flow goes up but decreases when the density of the dust particles in the air flow exceeds 0.45-0.55 kg/m^3 approximate. However, though wetting the air flow dust helps to increase the efficiency of dust collection, the collection efficiency has no significant changes when the water used exceeds 0.18-0.22 kg/kg approximate. Therefore, the experiment makes certain that the best dust collection condition areas can be shown as follows : ( 1 ) The velocity of flow of nozzle is about 25-27 m/s; (2) The density of dust particles in the air flow is about 0.45-0.55 kg/m^3 ; and (3) The water used should be about 0. 18-0.22 kg/kg dust narticles,
出处 《安全与环境学报》 CAS CSCD 2006年第1期61-63,共3页 Journal of Safety and Environment
基金 国家"十五"863计划项目(2001AA642010)
关键词 环境工程 对喷流除尘 喷嘴风速 含尘浓度 润湿含尘气流 除尘效率 environmental engineering dust collection in impingingstream velocity of flow of nozzle density of dust particles in air flow wetting dusty air flow dust removingefficiency
  • 相关文献

参考文献14

  • 1伍沅 trans.撞击流反应器:原理和应用[M].Beijing:Chemical Industry Press,1996.2-3.
  • 2ELPERIN I T. Heat and mass transfer in opposing currents [J]. Energy Physics, 1961, 56(6) : 62-68.
  • 3ELPERIN I T. Transport process in opposing jets [M]. Minsk: Naykai Tekhnica, 1972.
  • 4LAINER A I, ISRAFILOV T D, ELPERIN I T, et al. Study of counter flow trapping of alunite dust [J]. The Soviet Jour of Non-Ferrous,1975, 4(8): 43-45.
  • 5BERMAN Yuli TAMIR Abraham. Experimental investigation of phosphate dust collection in impinging stream [ J l. Canadian Journal of Chemical Engineering, 1996, 74(6): 817-821.
  • 6BERMAN Yuli, TAMIR Abraham, Coalescence model of particles in coaxial impinging stream [ J ], Canadian Journal of Chemical Engineering, 1996, 74(6) : 822-833.
  • 7KITRON A, ELPERIN T, TAMIR A. Monte Carlo simulation of gassolids suspension flows in impinging streams reactars [J]. International Jourttal of Multiphase Flow, 1990, 16(1): 1-17.
  • 8BERMAN Yuli, TAMIR Abraham. Kinetics of droplets' sedimentation in a continuous gravity settler [ J]. Chemical Engineering Science.2003, 58(10): 2089-2102.
  • 9张和平,刘洁,王丽娟.撞击流除尘技术研究[J].化工矿物与加工,2004,33(11):24-27. 被引量:5
  • 10张和平,刘洁,裴威.撞击流除尘器中单一颗粒动力学特性理论研究[J].矿业安全与环保,2005,32(1):13-15. 被引量:5

二级参考文献31

  • 1宁成,李谦,李劲,韩才元.脉冲电晕对燃煤烟气中NO和SO_2的脱除研究[J].华中理工大学学报,1994,22(1X):27-31. 被引量:7
  • 2[1]Kawamura K, Aoki S, Kimura H, et al. Pilot plant experiment on the treatment of exhaust gas from a sintering machine by electron beam irradiation. Environ Sci Tech, 1980,14(3) :288~294
  • 3[2]Tokumaga O, Nishimara N, Washino M. Radiation treatment of exhaust gases ⅣV:oxidation of NO in the moist mixture of O2 and N2. Rediat Phys Chem, 1978,11 (1): 117~122
  • 4[3]Pulumbo F J, Frass F. The removal of sulfur from stack gases by an electric discharge. J Air Pollution Contr Assoc,1971,21 (2): 143~ 144
  • 5[4]Masuda S,Nakao H. Control of NOx by positive and negative pulsed corona discharges. IEEE Trans Indust Appl,1990,26(2) :374~383
  • 6[5]Mizuno A,Clements J S, Davis R H. A method for the removal of sulfur dioxide from exhaust gas utilizing pulsed streamer corona for electron energization. IEEE Trans Ind Appl, 1986, IA - 22(2) :516~521
  • 7[6]Higashi M, Uchida S, Suzuki N, et al. Soot elimination and NOx and SOx reduction in diesel - engine exhaust by a combination of discharge plasma and oil dynamics. IEEE Trans Plasma Sci, 1992,20(1): 1 ~ 12
  • 8[7]Chang J S, Looy P C, Pevler J, et al. Reduction NOx from a combustton flue gas by a corona radical injection method.Proc IEEE/IAS Annual Meeting, 1993,1969 ~ 1975
  • 9[8]Yamamoto T, Lawless P A, Sparks L E. Triangle - shaped DC corona discharge device for molecular decomposition.IEEE Trans Ind Appl, 1996,25(4) :743 ~749
  • 10[9]Masuda S,Wu Y. Removal of NOx by corona discharge induced by sharp rising nanosecond pulse voltage. 7th Int Conf on Electrostatic Phenomena, Oxford, Inst Phys Conf Ser,1987,85: 249 ~ 254

共引文献33

同被引文献100

引证文献9

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部