摘要
本文研究了量子力学矩阵元的经典极限,用新的方法证明了如下定理:在分立谱情况下,量子力学矩阵元fnm的经典极限是相应经典力学量f(t)之Fourier级数展开的第n-m个分量;在连续谱情况下,量子力学矩阵元fE'E,E与Planck常量的乘积fE'E的经典极限是相应经典力学量f(t)之Fourier积分展开的第ω次分量。
The classical limit of quantum mechanical matrix elements is studied.A new method is introduced to prove the following theorem:For a system of discrete spectrum,the matrix elements fnmin classical limit become the(n-m)th components of its Fourier series;for a system of continuous spectrum,the matrix elements fE'E become the ωth components of its Fourier integral.
出处
《大学物理》
北大核心
1996年第2期13-17,共5页
College Physics