期刊文献+

基于自适应PID控制器的异步电机矢量控制 被引量:7

Asynchronous motor vector control based on self-adaptive PID controller
下载PDF
导出
摘要 为了克服传统PID控制器自适应性及鲁棒性相对较差的缺点,实现高性能的异步电机矢量控制,提出了采用人工神经网络技术构造自适应PID控制器,在保证调速系统全局快速收敛的情况下,运用有监督的Delta学习规则和合理的控制算法,实现自适应PID控制器参数的在线自动调整。应用MATLAB软件设计基于自适应PID控制器的异步电机矢量控制模型并进行仿真研究,结果表明,自适应PID控制器不仅能够满足异步电动机矢量控制的实时性要求,而且可以大大改善异步电动机的动态性能与静态性能,表现出较强的自适应性与鲁棒性,因而可以取代传统PID控制器以实现高性能的异步电动机矢量控制。 A self-adaptive PID controller based on artificial neural network technology is brought forward to overcome the shortcomings of the traditional PID controller that is relatively weak in self-adaptability and robustness, and to achieve a vector control by an asynchronous motor with high performances. The supervisory Delta study rules and reasonable control algorithms were adopted to automatically fulfill the on-line parameter adjustment of the self-adaptive PID controller in the assurance of an overall and fast convergence of the asynchronous motor driving system. The MATLAB software was used to establish the asynchronous motor vector-controlling model based on the self-adaptive P1D controller to carry out a simulation investigation. The results show that the self-adaptive PID controller, which has relatively high self-adaptability and robustness, can satisfy the requirement for time-reality of the asynchronous motor vector control, and greatly improve the dynamic and static performances of the asynchronous motors. Thus the traditional PID controllers can be substituted to realize asynchronous motor vector-control with high performances.
出处 《辽宁工程技术大学学报(自然科学版)》 EI CAS 北大核心 2006年第1期73-75,共3页 Journal of Liaoning Technical University (Natural Science)
基金 辽宁省自然科学基金资助项目(20051206)
关键词 自适应 PID控制器 神经网络 矢量控制 鲁棒性 self-adaptive PID controller neural network vector control robustness
  • 相关文献

参考文献6

二级参考文献32

  • 1黄铮,杨大力.一种变步长因子及变动量因子的自适应算法[J].北京邮电大学学报,1994,17(3):90-94. 被引量:6
  • 2王士同.模糊系统、模糊神经网络及应用程序设计[M].上海:上海科学技术出版社,1997..
  • 3.GB/T 15945—1995.电力系统频率允许偏差[S].,1995..
  • 4苗振江 袁保宗.非线性连续神经网络一种新的分析方法[A]..模式识别与人工智能论文集[C].,1991.411-414.
  • 5张立明 杜昊.多层BP网络参数及误差曲面分析[A]..中国电子学会第九届年会论文集[C].,1990.410-415.
  • 6G布霍依诺.矿山压力和冲击地压[M].北京:煤炭工业出版社,1985..
  • 7Johnson J P, Ehsani M, Guzelgunler Y. Review of sensorless methods for brushless DC[C].IEEe Thirty-Fourth IAS Annual Meeting, 1999.
  • 8Lizuka K, Uzuhashi H, Kano M, et al. Microcomputer control for scnsorless brushless motor[J]. IEEE Trans on Industry Application, 1985, IA-21(3): 595-601.
  • 9Corley M J, Lorenz R D. Rotor position and velocity estimation for a salicat-pole permanent magnet synchronous machine at standstill and high speeds[J].IEEE Trans on Industry Application, 1998,34(2): 784-789.
  • 10Chen Zhiqian, Mutuwo Tomita, Shinji Doki, et al. New adaptive sliding observers for position- and velocity-sensorless controls of brushless DC motors[J]. IEEE Trans on Industrial Electronics, 2000,47(3): 582-591.

共引文献132

同被引文献87

引证文献7

二级引证文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部