期刊文献+

p-Ginzburg-Landau型极小元的渐近性质与p-调和映射的关系 被引量:1

Asymptotic Properties of p-Ginzburg-Landau Type Minimizers Associated with p-Harmonic Maps
下载PDF
导出
摘要 本文考虑的是一类p-Ginzburg-Landau型泛函极小元,当p∈(1,n)时的极限行为.研究了极小元的零点与p-调和映射的奇点间的关系,并证明了极小元在Cloc1,γ意义下收敛到p-调和映射. The author considers the asymptotic behavior of minimizers of a p-GinzburgLandau type functional in the case of p ∈ (1, n). It is presented that the zeros of minimizers locate near the singularities of a p-harmonic map. At the same time, the C(1OC)^(1,γ) convergence of the regularized minimizer to the p-harmonic map is proved.
作者 雷雨田
出处 《数学年刊(A辑)》 CSCD 北大核心 2006年第1期1-12,共12页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.10571087)江苏省教育厅科学基金(No.04KJB110062)资助的项目.
关键词 p-Ginzburg-Landau型泛函 P-调和映射 可正则化的极小元 Ginzburg-Landau functional, p-harmonic map, Regularized minimizer
  • 相关文献

参考文献10

  • 1Bethuel F., Brezis H. and Helein F., Ginzburg-Landau Vortices [M], Berlin: Birkhauser,1994.
  • 2Chen Y. Z. and DiBenedetto E., Boundary estimates for solutions of nonlinear degenerate parabolic systems [J].J. Reinc Angcw. Math., 1989, 395:102-131.
  • 3Giaquinta M., Multiply Integrals in the Calculus of Variations and Nonlinear Elliptic Systems [M], Ann. Math. Stud. Vol. 105, New York: Princeton Univ. Press, 1983.
  • 4Hardt R. and Chen B., Prescribing singularities for p-harmonic maps [J], Ind. Univ.Math. J., 1995, 44:575-602.
  • 5Hardt R., Lin F. H. and Wang C. Y., Singularities of p-energy minimizing maps [J],Comm. Pure Appl. Math., 1997, 50:399-448.
  • 6Hong M. C., Existence and partial regularity in the calculus of variations [J], Ann. Mat.Pura Appl., 1987, 149:311-328.
  • 7Lei Y. T., C^1,α convergence of a Ginzburg-Landau type minimizer in higher dimensions[J], Nonlinear Anal. TMA., 2004, 59:609-627.
  • 8Struwe M., Une estimation asymptotique pour le modele Ginzburg-Landau, C. R. Acad.Sci. Paris Ser. 1, 1993, 317:677-680.
  • 9Tolksdorf P., Everywhere-regularity for some quasilinear systems with a lack of ellipticity [J], Ann. Mat. Pura Appl., 1983, 134(4):241-266.
  • 10Wang C. Y., Limits of solutions to the generalized Ginzburg-Landau functional [J],Comm. Partial Diff. Equ., 2002, 27:877-906.

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部