期刊文献+

关于半单李代数的抛物子代数中的一类双极化 被引量:1

On a Class of Dipolarizations in Parabolic Subalgebras of Semisimple Lie Algebras
下载PDF
导出
摘要 本文给出了一种构造复半单李代数抛物子代数中双极化的方法,并给出了其实形式.一般情况下,构造的双极化是非对称的.这种构造方法给出了一大类非可解李代数中极化的例子.后者在表示理论和物理,特别是力学中有重要应用. This paper gives a method to construct dipolarizations in parabolic subalgebras of complex semisimple Lie algebras as well as some real forms of these Lie algebras. In general, the dipolarizations the author finds are nonsymmetric. This construction presents a large number of polarizations in non-solvable Lie algebras, which has important applications in representation theory and Physics, especially in Mechanics.
作者 邓少强
出处 《数学年刊(A辑)》 CSCD 北大核心 2006年第1期21-26,共6页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.10371057)教育部优秀青年教师资助计划和新世纪优秀人才支持计划资助的项目
关键词 双极化 极化 非对称双极化 Dipolarization, Polarization, Nonsymmetric dipolarization
  • 相关文献

参考文献14

  • 1Kaneyuki S., Homogeneous symplectic manifolds and dipolarizations in Lie algebras[J], Tokyo J. Math., 1992, 15:313-325.
  • 2Libermann P., Sur le probleme d'equivalence de certaines structures infinitesimales [J],Ann. Mat. Pura Appl., 1955, 36:27-120.
  • 3Libermann P., Sur les structures presque paracomplexes [J], C. R. Acad. Paris, 1952,234:2517-2519.
  • 4tIou Z., Deng S. and Kaneyuki S., Dipolarizations in compact semisimple Lie algebras and homogeneous parakahler manifolds [J], Tokyo J. Math., 1997, 20:381-388.
  • 5Auslander L. and Kostant B., Polarizations and unitary representations in solvable Lie groups [J], Inv. Math., 1971, 14:255-354.
  • 6Perelomov A. M., Integrable Systems of Classical Mechanics and Lie Algebras [M],Birkhauser, 1990.
  • 7Hou Z., Deng S., Kaneyuki S. and Nishiyama K., Dipolarizations in semisimple Lie algebras and homogeneous parakahler manifolds [J], J. Lie Theory, 1999, 9:215-232.
  • 8Deng S. and Kaneyuki S., An example of nonsymmetric dipolarizations in a Lie algebra[J], Tokyo J. Math., 1993, 16:509-511.
  • 9Meng D., Deng S. and Kaneyuki S., A remarkable class of nonsymmetric dipolarizations in Lie algebras [J], Yokohama Math. J., 1995, 43:117-123.
  • 10Deng S. and Meng D., Dipolarizations and solvable complete Lie algebras [J], Bull. of Inst. Math., Acad. Sinica, 2002, 30(1):1-8.

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部