期刊文献+

一个加性混合幂丢番图不等式(Ⅰ)

One Additive Diophantine Inequality with Mixed Powers (Ⅰ)
下载PDF
导出
摘要 本文证明了:如果λ1,…,λ6是非零实数,并且不同一符号,至少有一个λi/j(1≤i,j≤3) 是无理数,那么对任意实数η和ε>0,不等式|λ1x12+λ2x22+λ3x32+λ4s44+λ5x54+λ6x64+η|<ε有无穷多正整数解x1,…,x6. This paper shows that: if λ1,…,λ6 are nonzero real numbers, not all of the same sign, such that at least one of the ratios λi/λj(1≤i,j≤3) is irrational, then for any real number η and any ε 〉 0, the inequality |λ1x1^2+λ2x2^1+λ^3x3^2+λ^4x4^4+λ^5x5^4-λ6x6^4+η|〈ε has infinitely many solutions in positive integers x1,... , x6.
作者 李伟平
出处 《数学年刊(A辑)》 CSCD 北大核心 2006年第1期75-82,共8页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.10471104)资助的项目.
关键词 丢番图不等式 混合幂 圆法 Diophantine inequality, Mixed powers, Circle method
  • 相关文献

参考文献10

  • 1Davenport H. and Helbronn H., On indefine quadratic forms in five variables [J], J.London Math. Soc., 1946, 21:185-193.
  • 2Watson G. L., On indefinite quadratic forms in five variables [J], Proc. London Math.Soc., 1953, 3(3):170-182.
  • 3Bambah R. P., Four squares and a kth power [J], Quart. J. Math. Oxford, 1954, 5:191-202.
  • 4Cook R. J., Diophantine inequalities with mixed powers [J], J. Number Theory, 1977,9:142-152.
  • 5Cook R. J., Diophantine inequalities with mixed powers,Ⅱ[J], J. Number Theory, 1979,11(1):49-68.
  • 6Bruidern J., Additive Diophantine inequaliyies with mixed powers,Ⅰ[J], Mathematika,1987, 34:124-130.
  • 7Briidern J., Additive Diophantine inequaliyies with mixed powers,Ⅱ[J], Mathematika,1987, 34:131-140.
  • 8Briidern J., Additive Diophantine inequaliyies with mixed powers, Ⅲ[J], J. Number Theory, 1991, 37(2):199-210.
  • 9Davenport H. and Roth K. F., The solubility of certain Diophantine inequalities [J],Mathematika, 1955, 2(4):81-96.
  • 10Hua L. K., On Waring's problem [J], Quart. J. Math. Oxford, 1938, 9:199-202.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部