摘要
本文证明了:如果λ1,…,λ6是非零实数,并且不同一符号,至少有一个λi/j(1≤i,j≤3) 是无理数,那么对任意实数η和ε>0,不等式|λ1x12+λ2x22+λ3x32+λ4s44+λ5x54+λ6x64+η|<ε有无穷多正整数解x1,…,x6.
This paper shows that: if λ1,…,λ6 are nonzero real numbers, not all of the same sign, such that at least one of the ratios λi/λj(1≤i,j≤3) is irrational, then for any real number η and any ε 〉 0, the inequality |λ1x1^2+λ2x2^1+λ^3x3^2+λ^4x4^4+λ^5x5^4-λ6x6^4+η|〈ε has infinitely many solutions in positive integers x1,... , x6.
出处
《数学年刊(A辑)》
CSCD
北大核心
2006年第1期75-82,共8页
Chinese Annals of Mathematics
基金
国家自然科学基金(No.10471104)资助的项目.
关键词
丢番图不等式
混合幂
圆法
Diophantine inequality, Mixed powers, Circle method