期刊文献+

Bergman空间和q-Bloch空间之间的复合算子 被引量:5

Composition Operators Between Bergman Spaces and q-Bloch Spaces
下载PDF
导出
摘要 本文讨论了Bergman空间和q-Bloch空间(小q-Bloch空间)之间的复合算子Cφ的有界性和紧性特征,得到了以下结论:(1)Cφ是q-Bloch空间(小q-Bloch空间)到Bergman空间的有界算子或紧算子之充要条件; (2)Cφ是Bergman空间到q-Bloch空间的有界算子或紧算子之充要条件; (3)Cφ是Bergman空间到小q-Bloch空间的有界算子或紧算子之充要条件,还给出了算子 Cφ0的范数估计,此处Cφ0(f)(z)=foφ(z)-f(φ(0)). This paper discusses the boundedness and compactness of composition operators Cφ between Bergman spaces and q-Bloch spaces as well as little q-Bloch spaces. It is obtained as follows: (1) the sufficient and necessary condition for Cφ0 to be bounded or compacted operators from B^q (or B0^q) to AP; (2) the sufficient and necessary condition for Cφ to be bounded or compacted operators from Ap to B^q; (3) the sufficient and necessary condition for Cφ to be bounded or compacted operators from Aα^p to B0^q. At the same time, the authors give some estimations for norm of the operator Cφ^0, where Cφ^0(f)(z) = f o φ(z) - f(φ(0)).
出处 《数学年刊(A辑)》 CSCD 北大核心 2006年第1期109-118,共10页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.10471039)浙江省自然科学基金(No.M103104)湖州市自然科学基金(No.2005YZ02)资助的项目.
关键词 BERGMAN空间 q-Bloch空间 小q-Bloch空间 复合算子 范数 Bergman space, q-Bloch space, Little q-Bloch space, Composition operator, Norm
  • 相关文献

参考文献10

  • 1MacCluer B. D. and Shapiro J. H., Angular derivative and composition operators on the Hardy and Bergman spaces [J], Canad. J. Math., 1986, 38:878-906.
  • 2Shapiro J. H., Composition Operators on Classical Function Theory [M], New York,1993.
  • 3Madigan K. and Matheson A., Compact composition operators on the Bloch space [J],Trans. Amer. Math. Soc., 1995, 347:2679-2687.
  • 4Zhao R., Composition operators from Bloch type spaces to Hardy and Besov spaces [J],J. Math. Anal. Appl., 1999, 233:749-766.
  • 5Perez-Gonzz1ez F. and Xiao J., Bloch-Hardy Pullbacks [J], Acta Sci. Math. (Szeged),2001, 67:709-718.
  • 6Alvaerz V., Marquez M. A. and Vukoti6 D., Composition and superposition operators between the Bloch space and Bergman spaces [R], Preprint.
  • 7Kwon E. G. and Lee J., Norm of the composition operator mapping Bloch into Hardy or Bergman space [J], Commun. Korean Math. Soc., 2003, 18:653-659.
  • 8Zygmund A., Trigonometric Series [M], UK, Cambridge: Cambridge Univ. Press, 1959.
  • 9Hu Z. J., Extended Cesaro operators on mixed norm spaces [J], Proc. Amer. Math.Soc., 2002, 131:2171-2179.
  • 10Hedenmalm H., Korenblum B. and Zhu K. H., Theory of Bergman Spaces [M], GTM.199, New York: Springer-Verlag, 2000.

同被引文献22

  • 1李颂孝.不同加权Bergman空间之间的加权复合算子[J].嘉应学院学报,2004,22(6):5-8. 被引量:1
  • 2王漱石,胡璋剑.Bloch型空间上的广义Cesàro算子[J].数学年刊(A辑),2005,26(5):613-624. 被引量:6
  • 3叶善力.小Bloch型空间和Bloch型空间之间的点乘算子[J].福建师范大学学报(自然科学版),2006,22(2):1-4. 被引量:9
  • 4张学军,刘竟成.加权Bergman空间到μ-Bloch空间的复合算子[J].数学年刊(A辑),2007,28(2):255-266. 被引量:17
  • 5DUREN P L.Theory of Hp spaces[M].New York,Academic Press,1970:76-78.
  • 6LI S X,STEVIC S.Products of Volterra type operator and composition operator from H∞ and Bloch spaces to Zygmund spaces[J].J Math Anal Appl,2008,345:40-52.
  • 7LI S X,STEVIC S.Products of composition and integral type operators from Ha to Bloch space[J].Complex Ariables and Elliptic Equations,2008,53:463-474.
  • 8ZHU X L.Products of differentiation,composition and multiplication from Bergman type spaces to Bers type spaces[J].Integral Transforms and Special Functions,2007,18(3):223-231.
  • 9LI S X,STEVIC S.Products of integral-type operators and composition operators between Bloch-type spaces[J].J Math Anal Appl,2009,349:596-610.
  • 10MADIGAN K,MATHESON A.Compact composition on the Bloch Space[J].Trans Amer Math Soc,1995,347:2679-2687.

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部