摘要
讨论n个受柔性边界条件约束的随机变量的概率分布.理论解显示其概率密度函数随变量值增大而减小,当n趋於无穷大时收敛于Delta函数.在有序统计的理论框架下,同时得到最小值分布的解析解.
The probability distribution function of n random elements subjected to the flexible boundary condition was derived. The probability density is a descending curve and converges to a delta function as n tends to infinity. The distribution of the minimum value was discussed in context of ordered statistics.
出处
《应用数学和力学》
EI
CSCD
北大核心
2006年第3期281-284,共4页
Applied Mathematics and Mechanics
基金
美国国家科学基金资助项目(CMS_0503910)
关键词
柔性边界条件
受约束随机变量
概率密度
有序统计
flexible boundary condition
constrained random element
probability density
ordered statistics