期刊文献+

基于Hamilton体系和辛算法的微分对策数值法 被引量:4

Numerical Method Based on Hamilton System and Symplectic Algorithm to Differential Games
下载PDF
导出
摘要 微分对策求解往往涉及到困难的两点边值问题(TPBV),将线性二次型微分对策问题归结于Hamilton体系.对Hamilton系统,辛几何算法具有能复制Hamilton系统的动态结构并保持相平面上的测度的优点.从Hamilton系统角度,探讨了线性二次型微分对策系统的辛性质;作为尝试,对无限期间线性二次型微分对策的计算引入Symplectic_Runge_Kutta算法.给出了一个数值计算实例,从结果可以说明这种方法的可行,也体现了辛算法对系统的能量具有良好的守恒性. The resoluUon of differential games often concerns the difficult problem of Two Point Border Value (TPBV), then ascribe linear quadratic differential game to Hamilton system, To Hamilton system, the algorithm of symplectic geometry has the merits of being able to copy the dynamic structure of Hamilton system and to keep the measure of phase plane. From the point of view of Hamilton system, the symplectic characters of linear quadratic differential game were probed; And as a try, Symplectic-Runge-Kutta algorithm was inducted to the resolution of infinite horizon linear quadratic differential game.An example of numerical calculation was presented,and the result can illuminate the feasiblity of this method. At the same time, it embodies the fine conservation characteristics of symplectic algorithm to system energy.
出处 《应用数学和力学》 CSCD 北大核心 2006年第3期305-310,共6页 Applied Mathematics and Mechanics
基金 国家航空科学基金资助项目(2000CB080601) 国家十五国防重点预研资助项目(2002BK080602)
关键词 微分对策 HAMILTON系统 辛几何算法 线性二次型 differential game Hamilton system algorithm of symplectic geometry linear quadratic
  • 相关文献

参考文献7

  • 1FENG Kang.Symplectic difference schemes for linear Hamiltonian cononical systems[J].Journal of Computational Mathematics,1990,8(4):371-380.
  • 2冯康 秦孟兆.Hamilton系统的辛几何算法[M].杭州:浙江科学技术出版社,2003.271-344.
  • 3Guiomar Martin Herran.Symplectic methods for the solution to riccati matrix equations related to macroeconomic models[J].Computational Economics,1999,13(1):61-91.
  • 4杨然,周钢,许晓鸣.求解最优控制问题的改进辛几何算法[J].上海交通大学学报,2000,34(5):612-614. 被引量:4
  • 5李登峰.微分对策[M].北京:国防工业出版社,2001.5-180.
  • 6廖新浩,刘林.Hamilton系统数值计算的新方法[J].天文学进展,1996,14(1):3-11. 被引量:10
  • 7DENG Zi-chen.The optimal solution of the constrained nonlinear control system[J].Computers & Structures,1994,53(5):1115-1121.

二级参考文献9

  • 1廖新浩,刘林.一种改进的显式辛算法[J].计算物理,1994,11(2):212-218. 被引量:5
  • 2刘林,廖新浩,赵长印,王昌彬.辛算法在动力天文中的应用(Ⅲ)[J].天文学报,1994,35(1):51-66. 被引量:14
  • 3赵长印,王昌彬,黄天衣.对称多步法的适用范围[J].紫金山天文台台刊,1995,14(1):20-23. 被引量:1
  • 4冯康,自然科学进展,1991年,1卷,2期,102页
  • 5张光澄,最优控制的计算方法,1991年
  • 6Feng Kang,Journal of Compu-tational Mathematics,1990年,8卷,4期,371页
  • 7廖新浩,刘林.辛算法在限制性三体问题数值研究中的应用[J]计算物理,1995(01).
  • 8黄天衣,丁华.稳定化和自变量变换[J]天文学报,1981(04).
  • 9Lin Liu,Xinhao Liao. Numerical calculations in the orbital determination of an artificial satellite for a long arc[J] 1994,Celestial Mechanics & Dynamical Astronomy(3):221~235

共引文献16

同被引文献52

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部