期刊文献+

PCA类内平均脸法在人脸识别中的应用研究 被引量:29

Study for Within-Class Average Face Method Based on PCA in Face Recognition
下载PDF
导出
摘要 人脸识别是生物特征识别技术中一个非常活跃的课题,取得了很多研究成果。统计主元分析法(Prin-cipal Components Analysis,PCA)是人脸特征提取和识别的常用方法之一。结合传统PCA算法的特点,提出了一种用类内平均脸对类内样本进行规范化的方法。该方法有效地增加了类间样本的识别距离、有效地缩小了类内样本的识别距离,从而提高了人脸正确识别率。基于ORL人脸数据库的实验结果表明,该方法正确识别率达到98%,在人脸识别的实际应用中是一种可行的方法。 Face recognition is an active subject in the area of biometrical recognition technology, and lots of achievements have been obtained. Principal Components Analysis (PCA) is a basic method widely used in face feature extraction and recognition. In this paper, combined with the characteristics of traditional PCA, a method based on normalization of within-class average face image is presented, in which the classification distance of between-class samples is enlarged, while the classification distance of within-class samples is reduced. Thus face correct recognition rate is improved. Experimental results on ORL face database show that the method discussed has reached 98% of correct recognition rate, and is feasible in practical applications of faee reeognition.
出处 《计算机应用研究》 CSCD 北大核心 2006年第3期165-166,169,共3页 Application Research of Computers
基金 广东省自然科学基金资助项目(032356) 江门市科技攻门项目(江财企[2004]59号)
关键词 人脸识别 PCA算法 特征脸 类内平均脸 Face Recognition PCA Eigenfaee Within-Class Average Face
  • 相关文献

参考文献5

二级参考文献37

  • 1孙冬梅,裘正定.生物特征识别技术综述[J].电子学报,2001,29(z1):1744-1748. 被引量:143
  • 2Brunelli R,Poggio T.Face recognition:features versus templates [J].IEEE Trans.PAMI,1993,15(10):1042-1052.
  • 3Turk M,Pentland A.Face recognition using eigenfaces [J].Proc.of IEEE,Conf.on CVPR,1991:586-591.
  • 4Moghaddam B,et al.Probabilistic visual recognition for object recognition [J].IEEE Trans.on PAMI,1997,19(7):696-710.
  • 5Swets D L,Weng J.Using discriminant eigenfeatures for image retrieval [J].IEEE Trans.on PAMI,1996,18(8):831-836.
  • 6Lee S Y,et al.Recognition of human front faces using knowledge-based feature extraction and neurofuzzy algorithm [J].Pattern Recognition,1996,29(11):1863-1876.
  • 7Lawtence S,et al.Face recognition eigenface:a convolutioinal neural-network approach [J].IEEE Trans.on NN,1997,8(1):98-113.
  • 8Intrator N,Reisfeld D,et al.Face recognition using a hybrid supervised unsupervised neural network [J].Pattern Recognition Letters,1996,17(1):67-76.
  • 9Penev P S,Atick J J.Local Feature Analysis:A general statistical theory for object representation [J].Network:Computation in Neural Systems,1996,7(3):477-500.
  • 10Zhang J,et al.Face recognition:eigenface,elastic matching and neural nets [J].Proc.of IEEE,1997,85(9):1422-1435.

共引文献99

同被引文献147

引证文献29

二级引证文献102

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部