期刊文献+

基于模糊概率论的变压器局放信号模式识别法 被引量:4

Fuzzy Probability Theory Based Pattern Recognition Method of UHF Partial Discharge Signals in Power Transformers
下载PDF
导出
摘要 电力变压器局部放电信号的模式识别是局放研究中的一个难点和重点问题。文中通过对高采样率采集到的4种局放模式下的单个UHF脉冲信号进行小波包分解,从熵值和能量角度提取出6个特征量,运用了模糊理论基本思想,通过简单的计算求出各种放电模式的信息分布表和放电标量作为参考量。当给出一个待确定模式的局放信号时,求出其具体的放电标量,按照相对误差最小原则就可以确定出其模式归属。经实测局放信号验证,该方法思路清晰,简单有效。 Pattern recognition of partial, discharge is a difficult and key issue in power transformer field. In the paper, a method of PD pattern recognition for power transformer based on fuzzy probability theory is introduced, using six features extracted from entropy and energy of results of wavelet packet transformation. The message distribution table and discharge scalar quantity are therefore calculated as reference values by adopting fuzzy theory. When an uncertain discharge UHF pulse signal is given, the discharge scalar quantity is worked out in accordance with the least error principle and then the PD pattern of this signal is confirmed. In addition, recognition result of signals collected from laboratory indicates that the method proposed is simple, feasible and has great potential for practical application.
出处 《电力系统自动化》 EI CSCD 北大核心 2006年第4期71-74,共4页 Automation of Electric Power Systems
关键词 变压器 特高频 局部放电 模式识别 模糊 概率论 power transformer UHF partial discharge pattern recognit on fuzzy probability theory
  • 相关文献

参考文献6

二级参考文献33

  • 1彭天好,范龙振.BP神经网络的一种稳健改进算法[J].计算机应用研究,1996,13(6):29-30. 被引量:1
  • 2王耀南.一种神经网络的快速学习算法及其在图象边缘检测中的应用[J].计算机研究与发展,1997,34(5):377-381. 被引量:4
  • 3Stéphane Mallat 杨力华 戴道清 黄文良 等译.信号处理的小波导引(Wavelet Guide on Signal Processing)[M].北京:机械工业出版社(Beijing: China Machine Press),2002..
  • 4胡昌华 张军波 夏军 等(Hu Changhua Zhang Junbo Xia Jun et al).基于MATLAB的系统分析与设计--小波分析(The Analysis and Design of System Based on MATLAB--Wavelet Analysis)[M].西安:西安电子科技大学出版社( Xi''an:Xidian University Press),2000..
  • 5李建平(Li Jianping).小波分析与信号处理--理论、应用及软件实现(Wavelet Analysis and Signal Processing-- Theory,Application and Software Realization)[M].重庆:重庆出版社(Chongqing: Chongqing Press),1997..
  • 6GULSKI E, KRIVDA A. Neural networks as a tool for recognition of partial discharges[J]. IEEE Trans On Electrical Insulation, 1993, 28(6) :984-1001.
  • 7XIN Y. Evolving artificial neural networks[J]. Proceedings of the IEEE, 1999,87(9): 1423-1447.
  • 8BEYER H G, DEB K. On self-adaptive features in real parameter revolutionary algorithms[J]. IEEE Trans On Evolutionary Computation, 2001,5 (3): 250-270.
  • 9Maragos P.Pattern spectrum and multiscal shape representation[J].IEEE Trans.on Pattern Analysis and Machine Intelligence,1989, 11(7): 701-716.
  • 10淡文刚(DanWengang).[D].北京:中国电力科学研究院,2000.

共引文献97

同被引文献45

引证文献4

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部