期刊文献+

基于互信息和随机优化的超光谱遥感图像配准 被引量:1

Registration of Remote Sensing Hyperspectral Imagery Using Mutual Information and Stochastic Optimization
下载PDF
导出
摘要 精确的谱间配准是从超光谱遥感图像中获取光谱信息的基本前提之一。而谱间配准的主要困难在于宽的成像光谱范围使波长间隔远的图像缺乏相似性,超光谱图像本身海量的数据也限制了配准算法的复杂性。提出了一种结合互信息和随机优化技术的多分辨率配准方法。该方法采用互信息作为相似性测度,能很好的适应超光谱图像光谱特征的变化;二阶同步试探随机逼近(2SPSA)算法的应用,解决了互信息的多变量优化问题;通过一种具有平移和旋转不变性的小波分解实现算法的多分辨率形式,能明显加快算法的收敛速度并保证搜索结果的全局最优性。实验结果表明该算法适用于配准波长范围很宽的超光谱图像,并能达到子像素的配准精度。 Accurate inter-band registration is indispensable to exploit inherent spectral information in hyperspectral remote sensing imagery. Due to wide spectral range of hyperspeetral sensor, there is a general lack of similarity between the pairs of images from widely separated wavelengths, which makes registration of hyperspectral imagery difficult to carry out. On the other hand, huge volume of hyperspectral dataset also limits some complex registration algorithms to be adopted. A multiresolution registration method using mutual information combined with a stochastic optimization technique is presented to solve these problems. First, mutual information is used as the similarity metric in registration, which is robust against variations of spectral characteristic of images. Then, the second-order simultaneous perturbation stochastic approximation (2SPSA) method applied in mutual iniormation optimization algorithms, because it requires only five object function measurements at each iteration^independent of the problem dimension. Moreover, the multiresolution implementation of the registration algorithm based on a rotation- and translation-invariant wavelet and on a coarse to-fine updating strategy effectively reduces the searching region and ensure that the algorithm can reach the global maximum. In experiment some pairs of band images, which are misaligned by rotation and/or translation, are registered by our scheme, And the results show the algorithm is efficient for registering hyperspeetral imagery and yield sub-pixel accuracy.
出处 《遥感技术与应用》 CSCD 2006年第1期61-66,共6页 Remote Sensing Technology and Application
基金 国家自然科学基金(60175001) 西北工业大学研究生创业种子基金(Z200561)
关键词 图像配准 超光谱遥感图像 互信息 随机优化 多分辨率 Image registration, Hyperspectral remote sensing imagery, Mutual information, Stochastic optimization, Multiresolution
  • 相关文献

参考文献10

  • 1王增柱,刘同怀,黄鲁.基于光谱分类的超光谱数据压缩方法[J].遥感技术与应用,2001,16(3):148-152. 被引量:4
  • 2Mahdi H,Farag A A.Image Registration in Multispectral Data Sets[A].Mercer B.Conference Management Service eds.Proceedings of ICIP 2002[C].2002 International Conference on Image Processing.Los Alamitos:IEEE Computer Society Press,2002,Ⅱ:369-372.
  • 3Neville R A,Sun L X,Staenz K.Detection of Keystone in Image Spectrometer Data[A].Shen S S,Lewis P E.Algorithms and Technologies for Multispectral,Hyperspectral and Ultraspectral Imagery X[C].Bellingham:SPIE,2004.208-217.
  • 4Brown L G.Survey of Image Registration Techniques[J].ACM Computing Survey,1992,24(4):325-376.
  • 5Johnson K,Rhodes A C,Zavorin I,et al.Mutual Information as a Similarity Measure for Remote Sensing Image Registration[A].Roper W E.George Washington University eds.Geo-spatial Image and Data Explotation Ⅱ[C].Bellingham:SPIE,2001.51-61.
  • 6Simoncelli E P,Freeman W T.The Steerable Pyramid:A Flexible Architecture for Multi-scale Derivative Computation[A].Werner B.Proceedings of ICIP '95[C].Second International Conference on Image Processing.Los Alamitos:IEEE Computer Society Press,1995,Ⅱ:444-447.
  • 7Moigne J L,Zavorin I.Use of Wavelet for Image Registration[A].Szu H H,Vetterli M,Campbell J W,eds.Wavelet Application Ⅶ[C].SPIE Aerosense 2000.Bellingham:SPIE,2000.99-108.
  • 8Spall J C.Multivariate Stochastic Approximation Using a Simultaneous Perturbation Gradient Approximation[J].IEEE Transaction on Automatic Control,1992,37(3):332-341.
  • 9Maryak J L,Chin D C.Global Random Optimization by Simultaneous Perturbation Stochastic Approximation[A].AACC.Proceedings of the 2001 American Control Conference[C].The 2001 American Control Conference.Piscataway:IEEE Service Center,2001,2:756-762.
  • 10Spall J C.Adaptive Stochastic Approximation by Simultaneous Perturbation[J].IEEE Transaction on Automatic Control,2000,45(10):1839-1853.

二级参考文献3

  • 1杨福生,小波变换的工程分析与应用,1999年
  • 2余松煜,现代图像信息压缩技术,1998年
  • 3Tse Y T,IEEE Geosci Remote Sensing Symposium,1990年,361~364页

共引文献3

同被引文献12

  • 1JASON C,STEPHEN L,JOHN K.Processing misregistered hyperspectral data[J].SPIE,2007,6565:1-10.
  • 2HECTOR E,GLENN F.Automatic subpixel registration for a tunable hyperspectral imaging system[J].IEEE Geoscience and Remotesensing Letters,2006,3(3):397-400.
  • 3HECTOR E,GLENN F,THOMAS C.Non-rigid registration of hyperspectral imagery for analysis of agronomic scenes[J].Biosystems Engineering,2007,98(3):267-275.
  • 4VASILEIONS A,THEODORE V.On the estimation of subpixel motion using phase correlation[J].Journal of Electronic Imaging,2007,16(3):1-8.
  • 5FOROOSH H,ZERUBIA J,BERTHOD M.Extension of phase correlation to sub-pixel registration[J].IEEE Trans.On Image Processing,2002,11(3):188-200.
  • 6HOGE W S.A subspace identification extension to the phase correlation method[J].IEEE Trans.Med.Imaging,2003,22(2):277-280.
  • 7于海洋,甘甫平,党福星.高分辨率遥感影像波段配准误差试验分析[J].国土资源遥感,2007,19(3):39-42. 被引量:8
  • 8黎俊,彭启民,范植华.亚像素级图像配准算法研究[J].中国图象图形学报,2008,13(11):2070-2075. 被引量:40
  • 9陈治,朱洪程,胡晓东,胡小唐.基于相位相关技术的MEMS旋转角度高分辨力测量[J].光学精密工程,2009,17(8):1884-1889. 被引量:8
  • 10冯宇平,戴明,孙立悦,张威.图像自动拼接融合的优化设计[J].光学精密工程,2010,18(2):470-476. 被引量:27

引证文献1

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部