期刊文献+

工程结构损伤的集成神经网络识别研究 被引量:5

STUDY ON INTEGRATED NEURAL NETWORK FOR DAMAGE IDENTIFICATION OF ENGINEERING STRUCTURES
下载PDF
导出
摘要 从结构损伤识别的实际出发,提出采用基于信息融合理论的集成神经网络技术对结构损伤状况进行识别,即通过结构损伤特征信息的有效组合,用各种子神经网络从不同侧面对结构损伤进行初步识别诊断,然后对识别结果进行决策融合。给出了系统的实现策略和子网络的组建原则。从识别实例中可以看出,此识别方法充分利用了各种特征信息,可以有效地提高识别率。 From the point of practice of damage identification of structures,the integrated neural network damage(identification) technology is put forward based on the information fusion theory.Taking the sub-neural networks as primary damage identification measures from different sides,the conclusions are gained through decision-making fusion.The realizable policy of the system identification and the established principle of the sub-neural networks are given in the paper.It can be educed from the examples that it takes full advantage of diversified characteristic informations,and(improves) the diagnosis rate.
出处 《振动与冲击》 EI CSCD 北大核心 2006年第1期14-17,共4页 Journal of Vibration and Shock
基金 国家自然科学基金资助项目(50275024)
关键词 工程结构 损伤识别 集成神经网络 信息融合 识别率 engineering structure,damage identification,integrated neural networks,information fusion,(identification) rate
  • 相关文献

参考文献9

  • 1Ceravolo R,Stefano A D,Torino P.Damage location in structures through a connectivistic use of FEM model analysis[J].Modal Analysis,1995,10:178-186.
  • 2Povich C R,Lim I W.An artificial neural network approach to structural damage detection using frequency response functions[A].Proceedings of the 1994 AIAA/ASME Adaptive Structures Forum,La Jolla.CA,1994,151-159.
  • 3Luo H,Hanagud S.Dynamic learning rate neural network training and composite structural damage detection[J].Journal of AIAA,1997,35:1522-1527.
  • 4谢献忠,易伟建.建模误差对结构损伤识别神经网络的输入向量的影响[J].振动与冲击,2004,23(2):39-43. 被引量:3
  • 5Lam H F,Ko J M,Wong C W.Localization of damaged structural connections based on experimental modal and sensitivity analysis[J].Journal of Sound and Vibration,1998,210(1):91-115.
  • 6Rhim J,Lee S W.A neural network approach for damage detection and identification of structures[J].Computational Mechanics,1995,16(6):437-443.
  • 7Wu X,Ghaboussi J,Garrett J H.Use of neural networks in detection of structural damage[J].Computer & Structures,1992,42(4):649-659.
  • 8罗跃纲,曾海泉,闻邦椿.机械故障诊断的遗传BP算法应用研究[J].机械科学与技术,2002,21(4):625-627. 被引量:15
  • 9王柏生,倪一清,高赞明.框架结构连接损伤识别神经网络输入参数的确定[J].振动工程学报,2000,13(1):137-142. 被引量:38

二级参考文献13

  • 1杨晓红,刘乐善.用遗传算法优化神经网络结构[J].计算机应用与软件,1997,14(3):59-65. 被引量:18
  • 2徐宜桂,史铁林,杨叔子.基于神经网络的结构动力模型修改和破损诊断研究[J].振动工程学报,1997,10(1):8-12. 被引量:44
  • 3Luo H,AIAA J,1997年,35卷,1522页
  • 4Chen S S,Proceedings of SPIE,1994年,191卷,2期,176页
  • 5Elkordy M F,J Computing Civil Engineering,1993年,7卷,103页
  • 6Levin R I,Lieven N A J.Dynamic finite element model updating using neural networks[J].Journal of Sound and Vibration,1998,210:593-607
  • 7Kaminski P C.The approximation location of damage through the analysis of natural frequencies with artificial neural networks[J].Journal of Process Mechanical Engineering,1995,209(E2):117-124
  • 8Lam H F,Ko J M,Wong C W.Localization of damaged structural connection based on experimental modal and sensitivity analysis[J].Journal of Sound and Vibration,1998,210(1):91-115
  • 9Ni Y Q,Wang B S,Ko J M.Selection of input to neural networks for structural damage identification[A].Smart Systems for Bridges,Structures and Highways[C],SPIE,1999,3671:270-280
  • 10王柏生,丁皓江,倪一清,高赞明.模型参数误差对用神经网络进行结构损伤识别的影响[J].土木工程学报,2000,33(1):50-55. 被引量:29

共引文献52

同被引文献83

引证文献5

二级引证文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部