摘要
Let (G, G+) be a quasi-partial ordered group such that G+^0=G+∩G+^-1 is a non-trivial subgroup of G. Let [G] be the collection of left cosets and [G+] be its positive. Denote by T^G+ and T^[G+] the associated Toeplitz algebras. We prove that T^G+ is unitarily isomorphic to a C^*-subalgebra of T^|G+|⊙(G+^+) if there exists a deformation retraction from G onto G+^0. Suppose further that G+^0 is normal, then ,T^G+ and ,T^|G+|⊙GT^*(G+^0) are unitarily equivalent.
设G为一个离散群,(G,G_+)为一个拟偏序群使得G_+~0=G_+∩G_+^(-1)为G的非平凡子群。令[G]为G关于G_+~0的左倍集全体,|G_+|为[G]的正部。记T^(G_+)和T^([G_+])为相应的Toeplitz代数。当存在一个从G到G_+~0上的形变收缩映照时,我们证明了T^(G_+)酉同构于T^([G_+])×C_r~*(G_+~0)的一个C_-~*c子代数。若进一步,G_+~0还为G的一个正规子群,则T^(G_+)与T^([G_+])×C_r~*(G_+~0)酉同构。
基金
the National Natural Foundation of China (10371051)
Shanghai Natural Science Foundation (05ZR14094) and Shanghai Municipal Education Commission (05DZ04)