摘要
对原变量的N-S方程进行一阶时间离散,采用共轭梯度法解除压强-速度的耦合.对所得的一系列Laplace方程、Possion方程和Helmhotz方程均进行边界积分法求解,首次得到了粘性N-S方程的边界积分表示式.圆柱的定常、非定常尾迹计算结果表明了本文方法的有效性.
The first-order time splitting method is used to discretize the Navier-Stokes equations with primitive variables and a conjugate gradient method is used to decouple the variables.The resulted Laplace equations, Possion equations and Helmhotz equations are solved by using Boundary Integral Method and thus a boundary integral formulation for viscous Navier-Stokes equation is established for the first time.The numerical results for the steady and unsteady viscous flow aroulld cylindical body show the method developed in this paper is efficient.
出处
《力学学报》
EI
CSCD
北大核心
1996年第2期225-232,共8页
Chinese Journal of Theoretical and Applied Mechanics
关键词
边界积分
N-S方程
不可压流
粘性流
boundary integral method,Navier-Stokes equation,incompressible flow