期刊文献+

提升模的推广 被引量:3

Generalizations of lifting modules
下载PDF
导出
摘要 作为提升模的推广,分别对偶于FI-扩张模、CESS-模和弱扩张模,引入了FI-提升模、SSRS-模和弱提升模的概念,并给出了这些模的基本性质. As a kind of generalization of lifting modules for the dualizing FI-extending modules, CESS-modules, and weak extending modules, we introduce the concepts of FI-lifting modules, SSRS-modules, and weak lifting modules, respectively, and their basic properties were also given.
出处 《兰州理工大学学报》 CAS 北大核心 2006年第1期142-145,共4页 Journal of Lanzhou University of Technology
关键词 FI-提升模 SSRS-模 弱提升模 FI-lifting modules SSRS-modules weak lifting modules
  • 相关文献

参考文献13

  • 1BIRKENMEIER G F,MLLER B J,RIZVI S T.Modules in which every fully invariant submodule is essential in a direct summand[J].Comm Algebra,2002,30(3):1 395-1 415.
  • 2BIRKENMEIER G F,PARK J K,RIZVI S T.Modules in which every fully invariant submodule in fully invariant summand[J].Comm Algebra,2002,30(4):1 833-1 852.
  • 3SMITH P F.CS-modules and weak CS-modules(non-commutative ring theory)[J].Springer LNM,1990(1448):543-572.
  • 4LIU Zhongkui.On X-extending and X-continuous modules[J].Comm Algebra,2001,29(6):2 407-2 418.
  • 5CELIK C,HARMANC A,SMITH P F.A Generalization of CS-modules[J].Comm Algebra,1995,23(14):5 445-5 460.
  • 6DOGRUOZ S,SMITH P F.Modules which are extending relative to module classes[J].Comm Algebra,1998,26(6):1 699-1 721.
  • 7吴德军.χ-提升模[J].兰州理工大学学报,2005,31(6):141-143. 被引量:2
  • 8MOHAMED S H,MLLER B J.Continuous and discrete module[M].Cambridge:Cambridge University Press,1990.
  • 9KESKIN D.On Lifting modules[J].Comm Algebra,2000,28(7):3 427-3 440.
  • 10WISBAUER R.Foundations of moudule and ring theory[M].Gordon and Breach:Philadelphia,1991.

二级参考文献7

  • 1KESKIN D. Finite direct sms of (D1)-Modules [J]. Tr J of Mathematics, 1998,22:85-91.
  • 2KESKIN D. Characterizations of right perfect rings by +oplus-supplemented modules [J]. Contempm Math, 2000, 259: 313-318.
  • 3HARMANCI A, KESKIN D, SMITH P F. On +-supplemented modules [J]. Acta Mathematica Hung,1999,83:161-169.
  • 4LIU Zhongkui. Direct sums of type 2 X-extending modules [J].Vietnam J Math, 2001,29: 225-233.
  • 5KESKIN D. On lifting modules [J]. Comm Algebra, 2000, 28(7) :3427-3440.
  • 6MOHAMED S H, MUI_I.FR B J. Continuous and discrete module [M]. Cambridge:Cambridge University Press, 1990.
  • 7WISBAUER R. Foundations of mouduie and ringtheory [M].Gordon and Breach:Philadelphia, 1991.

共引文献1

同被引文献14

  • 1吴德军.χ-提升模[J].兰州理工大学学报,2005,31(6):141-143. 被引量:2
  • 2吴德军.提升模的无限直和[J].甘肃科学学报,2007,19(1):7-9. 被引量:7
  • 3Ozcan A C, Harmanci A, Smith P F. Duo Modules[J]. Glasgow Math. J. ,2006,12:533-545.
  • 4Anderson F W, Fuller K R. Rings and Categories of Modules [M]. New York: Springer-Verlag, 1992.
  • 5Wisbauer R. Foundations of Module and Ring Theory[M]. Philadelphia:Gordon and Breach, 1991.
  • 6Kasch F. Modules and Rings[M]. London: Academic Press Inc. (London) Ltd. ,1982.
  • 7Alizade R,Buyukasik E. Cofinitely Weak Supplemented Modules[J]. Comm. Algebra,2003,31(11) : 5 377-5 390.
  • 8ALIZADE R,BILHAN G,SMITH P F. Modules whose maximal submodules have supplements [J]. Comm Algebra, 2001, 29(6):2 389-2 405.
  • 9AIAZADE R, BUYUKASIK E. Cofinitely weak supplemented modules[J]. Comm Algebra, 2003,31(11) : 5 377-5 390.
  • 10WANG Yongduo, DING Nanqing. Generalized supplemented modules [J]. Taiwan Residents J Math, 2006,10(6) : 1 589-1 601.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部