摘要
We propose an algorithm for learning hierarchical user interest models according to the Web pages users have browsed. In this algorithm, the interests of a user are represented into a tree which is called a user interest tree, the content and the structure of which can change simultaneously to adapt to the changes in a user's interests. This expression represents a user's specific and general interests as a continuurn. In some sense, specific interests correspond to shortterm interests, while general interests correspond to longterm interests. So this representation more really reflects the users' interests. The algorithm can automatically model a us er's multiple interest domains, dynamically generate the in terest models and prune a user interest tree when the number of the nodes in it exceeds given value. Finally, we show the experiment results in a Chinese Web Site.
We propose an algorithm for learning hierarchical user interest models according to the Web pages users have browsed. In this algorithm, the interests of a user are represented into a tree which is called a user interest tree, the content and the structure of which can change simultaneously to adapt to the changes in a user's interests. This expression represents a user's specific and general interests as a continuurn. In some sense, specific interests correspond to shortterm interests, while general interests correspond to longterm interests. So this representation more really reflects the users' interests. The algorithm can automatically model a us er's multiple interest domains, dynamically generate the in terest models and prune a user interest tree when the number of the nodes in it exceeds given value. Finally, we show the experiment results in a Chinese Web Site.
基金
Supported by the National Natural Science Funda-tion of China (69973012 ,60273080)