期刊文献+

第二大根小于1的简单图 被引量:3

ON GRAPHS WHOSE SECOND LARGEST EIGENVALUE IS LESS THAN 1
原文传递
导出
摘要 设G为n阶简单图,λ2(G)为G的第二大特征根.我们给出了所有使λ2(G)<1 的偶图,以及使λ2(G)<1、围长不小于4的非偶图. Let G be a simple graph with n vertices, and let λ1(G)≥λ2(G)≥... ≥λn(G) be the eigenvalues of the adjacency matrix of G. We call λ2(G) the second largest eigenvalue of G. In this paper, all the non-bipartite graphs with girth g≥4 and all the bipartite graphs whose second largest eigenvalue is less than 1 have been determined.
出处 《系统科学与数学》 CSCD 北大核心 2006年第1期121-128,共8页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(10331020) 浙江省教育厅科研项目(20020975) 浙江林学院博士启动基金资助课题.
关键词 特征根 偶图 围长 Graph, eigenvalue, bipartite graph, girth.
  • 相关文献

参考文献13

  • 1Cao D, Hong Y. Graphs characterized by the second eigenvalue. J. Graph Theory, 1993, 17(3):325-331.
  • 2Chung F R K, Gyárfás A, Tuza Z, Trotter W T. The maximum number of edges in 2K2-free graphs of bounded degree. Discrete Math., 1990, 81: 129-135.
  • 3Cvetkovic D. On graphs whose second largest eigenvalue does not exceed 1. Publ. Inst. Math.(Beograd), 1982, 31(45): 15-20.
  • 4Cvetkovic D, Doob M, Gutman I and Torgasev A. Recent Results in the Theory of Graph Spectra.North-Holland-Amsterdam, 1988.
  • 5Cvetkovic D, Doob M and Sachs H. Spectra of Graphs-theory and application. Academic Press,New York, 1980.
  • 6Cvetkovic D, Petrid M. A table of connected graphs on six vertices. Discrete Math., 1984, 50:37-49.
  • 7Cvetkovic D, Simic S. On graphs whose second largest eigenvalue does not exceed √5-1/2 Discrete Math., 1995, 138: 213-227.
  • 8Hong Y, Sharp lower bounds on the eigenvalues of trees. Linear Algebra Appl., 1989, 113: 101-105.
  • 9Li J, Zhou H. Maximum induced matchings in graphs. Discrete Math, 1997, 170: 277-281.
  • 10Neumaier A. The second largest eigenvalue of a tree. Linear Algebra and Appl., 1982, 46: 9-25.

二级参考文献3

  • 1Hong Y,Linear Algebra Appl,1989年,113卷,141页
  • 2Shu Jinlong,运筹学学报,1998年,2卷,3期,6页
  • 3Cao D,J Graphory,1993年,17卷,3期,325页

共引文献2

同被引文献11

  • 1Cvetkovic D. On graphs whose second largest eigenvalue dose not exceed 1 [ J ]. Publ. Inst. Marh. (beogred) , ( N. S. ) 1982,31 (45) :5 -20.
  • 2Hong Y. Sharp lower bounds on the eigenvalue of trees [ J ]. Linear Algebra Appl, 1989,113:101 - 105.
  • 3Shu J.L. On trees whose second largest eigenvalue dose not exceed 1[J]. OR Trans,1998,2(3) :6 -9.
  • 4Xu G.H. On unieyclie graphs whose second largest eigenvalue dose not exceed 1 [J]. Discrete Appl Math, 2004,136:117 - 124.
  • 5Guo S.G. On bicyclic graphs whose second largest eigenvalue dose not exceed 1 [J]. Linear Mgebra Appl, 2005,407:201 -210.
  • 6Stanic Z. On regular graphs and coronas whose second largest eigenvalue does not exceed 1 [J]. Linear And Multilinear Algebra, 2010,58 (5) :545 - 554.
  • 7Stanic Z. On nested split graphs whose second largest eigenvalue is less than 1 [J]. Linear Mgebra Appl,2009:2 200 - 2211.
  • 8Li S. C , Yang H X. On tricyclic graphs whose second largest eigenvalue dose not exceed 1 [ J ] . Linear Algebra Appl.
  • 9Radosavljevic Z, Rasajski M. A class of reexive cactuses with four cycles [ J ]. Publ. Elektrotehn. Fak, Ser. Mat, 2003, 14:64 - 85.
  • 10Li S C ,Zhang M J. On the signless Laplacian index of cacti with a given numberof pendant vertices [ J ]. Linear Algebra Appl.

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部