期刊文献+

球域Bézier曲线的边界 被引量:2

Boundary of ball Bézier curve
下载PDF
导出
摘要 针对几何造型和产品测量中的有效误差分析和误差控制,提出了球域Bézier曲线.借助于微分几何中空间曲面族的包络算法和变量替换方法,求得球域Bézier曲线的精确边界表示;进一步利用函数逼近论中Legendre多项式的最佳一致平方逼近方法,把球域Bézier曲线的边界曲面近似地表示为一张Bézier曲面或分片Bézier曲面的组合.利用球面族的隐式方程,得到球域Bézier曲线的边界曲面的隐式方程,进而把边界曲面参数化为显式方程.理论推导和实例运算结果表明,球域Bézier曲线是一种表达方式简洁、存储空间节省、运算速度较快的误差分析和误差控制工具. Ball Bézier curve was presented for effective error analysls and error control in geometric modeling and product measuring. The envelope algorithm of a family of space surfaces in differential geometry and variable transformation were used to obtain an accurate representation for the boundary of a ball Bézier curve which can be approximately represented as a Bézier surface or a union of Bézier patches by using Legendre polynomial optimal square uniform approximation in function approximation theory. Implicit equations of a family of spheres were used to obtain an implicit equation of boundary surface which was parameterized and transferred to an explicit equation. Theoretical derivation and instance operation show that ball Bézier curve is a kind of effective error analysis and error control tool with brief expression, minimal storing space and fast operating speed.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2006年第2期197-201,共5页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(60373033 60333010) 国家'973'重点基础研究发展规划资助项目(2002CB312101)
关键词 误差分析 球域Bézier曲线 包络 边界 Legendre多项式逼近 error analysis ball Bézier curve envelope boundary Legendre polynomial approximation
  • 相关文献

参考文献12

  • 1SEDERBERG T W,FAROUKI R T.Approximated by interval Bézier curves[J].IEEE Computer Graphics and its Application,1992,15(2):87-95.
  • 2HU C Y,MAEKAWA E C,PATRIKALAKIS N M,et al.Robust interval algorithm for surface intersections[J].Computer-Aided Design,1997,29(9):617-627.
  • 3LIN H W,LIU L G,WANG G J.Boundary evaluation for interval Bézier curve[J].Computer-Aided Design,2002,34(9):637-646.
  • 4刘利刚,王国瑾,寿华好.区间Bézier曲面逼近[J].计算机辅助设计与图形学学报,2000,12(9):645-650. 被引量:9
  • 5LIN Q,ROKNE J G.Disk Bezier curves[J].Computer Aided Geometric Design,1998,15(7):721-737.
  • 6KIM K J.Minimum distance between a canal surface and a simple surface[J].Computer-Aided Design,2003,35(10):871-879.
  • 7FORREST A R.Computational geometry and software engineering:Towards a geometric computing environment[M]// RODGERS D,EARNSHAW R.Techniques for Computer Graphics.New Work:Springer,1998.
  • 8GARGANTINI I,HENRICI P.Circular arithmetic and the determination of polynomial zeros[J].Numerische Mathematik,1972,18(4):305-320.
  • 9FISCHER H.Ein versuch zur verallgemeinerung der intervallrechnung[M]// NICKEL K.Interval mathematics,lecture notes in computer science.Berlin:Springer,1975.
  • 10苏步青.实用微分几何引论[M].北京:科学出版社,1998..

二级参考文献6

  • 1陈效群,博士学位论文,1999年
  • 2寿华好,硕士学位论文,1998年
  • 3邱国贤,硕士学位论文,1997年
  • 4Hu Chunyi,Computer Aided Design,1996年,28卷,6/7期,495页
  • 5Hu Chunyi,Computer Aided Design,1996年,28卷,10期,807页
  • 6Hu Chunyi,Computer Aided Design,1996年,28卷,10期,819页

共引文献29

同被引文献10

  • 1翁彬,潘日晶.球域Bezier曲线的升阶与收敛[J].福建师范大学学报(自然科学版),2006,22(1):16-19. 被引量:2
  • 2张纪文,罗国明.三次样条曲线的拓广──C曲线[J].计算机辅助工程,1996,5(3):12-20. 被引量:236
  • 3HU C Y, MAEKAWA E C, PATRIKALAKIS N M, et al. Robust interval algorithm for surface intersections [J]. Computer-Aided Design, 1997, 29(9) : 617 - 627.
  • 4LIN H W, LIU L G, WANG G J. Boundary evaluation for interval Bezier curve [J]. Computer-Aided Design, 2002, 34(9): 637-646.
  • 5SEDERBERG T W, FAROUKI R T. Approximation by interval Bezier curve [J]. IEEE Computing Graphics and its Application, 1992, 15(2): 87-95.
  • 6LIN Q, ROKNE J. Disk Bezier curves[J]. Computer Aided Geometric Design, 1995, 15(7) : 712 - 737.
  • 7KIM K J. Minimum distance between a canal surface and a simple surface[J]. Computer-Aided Design, 2003, 35(10) : 871 - 879.
  • 8FAROUKI R T. Legendre-Bernstein basis transformations [J]. Journal of Computational and Applied Mathematics, 2000, 119(1): 145-160.
  • 9林成森.数值计算方法[M].北京:科学出版社,1997.148-152.
  • 10刘海晨,邓建松.圆盘/球域控制点曲线/曲面在散乱数据拟合中的应用(英文)[J].中国科学技术大学学报,2008,38(2):113-120. 被引量:3

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部