摘要
研究了单部件组成的退化可修系统,假定故障部件“修复非新”的条件下,以系统中部件的故障次数N为更换策略进行了研究,推导出系统经长期运行单位时间内期望效益的明显表达式,而且在一定条件下证明了当更换策略N*=m in N≥1 fN≤Cω+CrC时,系统经长期运行单位时间内的期望效益最大,即最优更换策略N*是所有更换策略中最优的。最后,利用线性回归的方法对几何过程中的参数进行了估计。
In this paper, a deteriorative repairable system consisting of a component is studied. Assuming that the component after repair is not"as good as a new one", we consider a kind of replacement policy N of the system based on the number of failures. The explicit expressions of the long-run average benefit per unit time are calculated. Under additional condition, we prove that the average benefit is maximal when replacement policy N^* equals min N^*=min{N≥1|fN≤Cω+Cr/C}, in the meantime, the policy N^* is even optimal a mong all replacement policies. Finally, we can estimate the parameters of the geometric process by using linear regression method.
出处
《系统工程理论方法应用》
北大核心
2006年第1期80-82,89,共4页
Systems Engineering Theory·Methodology·Applications
基金
河南省自然科学基金资助项目(0211011900)
关键词
可修系统
更新过程
期望效益
几何过程
参数估计
线性回归
repairable system
renewal process
average benefit
geometric process
estimate parameter linear regression