期刊文献+

基于功能模块的基因表达谱聚类分析 被引量:1

Clustering of Gene Expression Profiles Based on Functional Modules
下载PDF
导出
摘要 按GENE ONTOLOGY基因功能分类体系,将基因模块化地组织成具有显著生物意义的低维功能模块单元,并将其作为新的分析指标用于分类微阵列疾病样本,从而提出了基于功能表达谱的聚类分析新途径.采用NC I60数据集,通过功能表达谱对组织样本进行聚类分析.结果显示,新算法不但得到高准确度的样本分型结果,而且能够直接从功能水平上给出相应的生物学解释.同时,用基于功能表达谱对组织样本进行聚类分析可以显著降低特征维数,有效地处理高检测误差与基因表达变异问题. Traditional clustering analysis of gene expression profiles is challenged by high measurement noise,curse of dimensionality and lacking of coherence in biological interpretations. Functional expression profiles (FEP), which is obtained by organizing the original genes expression profiles onto lowdimension functional modules using Gene Ontology, is proposed as new analysis indexes to cluster microarray disease samples in our novel method to tackle with the above issues. We compare the performance of hierarchical clustering and k-means clustering based on FEP and the conventional gene expression profiles (GEP) using the NCI60 dataset. The analysis results indicate that precise clustering of disease types and biological function comprehension of the analysis results can be achieved directly with FEP. In addition, FEP can also significantly reduce dimension and tackle with high with measurement noise efficiently.
出处 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第2期264-269,共6页 Journal of Tongji University:Natural Science
基金 国家自然科学基金资助项目(30370798 30170515 30370388) 国家"八六三"高技术研究发展计划资助项目(2003AA2Z2051 2002AA2Z2052)
关键词 基因表达谱 功能表达谱 基因功能分类体系 聚类 gene expression profile gene functional profile Gene Ontology clustering
  • 相关文献

参考文献16

  • 1Alon U,Barkai N, Notterman D A, et al. Broad patterns of gene expression revealed by clustering analysis of tuner and normal colon cancer tissues probed by oligonucleotide arrays[J]. Cell Biology, 1999 (96): 6745.
  • 2Ross D T, Scherf U, Eisen M B, et al. Systematic variation in gene expression patterns in human cancer cell lines[J], Nature Genet, 2000,24 (3): 227.
  • 3Alizadeh A A, Eisen M B, Eric D R, et al, Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling[J], Nature, 2000,403 (6769): 503.
  • 4Swain P S,Elowitz M B,Siggia E D. Intrinsic and extrinsic contributions to stochastlcity in gene expression[J]. Proc Natl Acad Sci USA, 2002,99: 12795.
  • 5Elowitz M B, Levine A J, Siggia E D, et al, Stochastic gene expression in a single cell[J], Sclence,2002(297): 1183.
  • 6Tu Y, Stolovitzky G, Klein U. Quantitative noise analysis for gene expression microarray experiments[J]. Proe Natl Acad Sci USA,2002,99: 14031.
  • 7Novak J P, Sladek R, Hudson T J. Characterization of variability in large-scale gene expression data: Implications for study design[J]. Genomics,2002,79: 104.
  • 8Xing E P,Jordan J M,Karp R, Feature selection for high-dimensional genomic microarray data [A], 18th International Conference on Machine Learning [C]. San Fransisco: Morgan Kanfmann Publishers Ine, 2001. 601.
  • 9Xing E P, Karp R M. CLIFF: Clustering of high-dimensional microarray data via iterative feature filtering using normalized cuts[J], Bioinformatics, 2001,17(Sup 1):306.
  • 10Ihmels J, Friedlander G, Bergmann S, et al. Revealing modular organization in the yeast transcriptional network[J]. Nat Genet,2002,31:370.

同被引文献7

  • 1向世明,赵国英,崔丽,陈睿,李华.拓扑图格独立分量分析和谱聚类支持的纹理探测[J].计算机辅助设计与图形学学报,2005,17(5):935-940. 被引量:3
  • 2高琰,谷士文,唐琎,蔡自兴.机器学习中谱聚类方法的研究[J].计算机科学,2007,34(2):201-203. 被引量:31
  • 3Shi J, Malik J. Normalized cuts and image segmentation [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(8):888-905.
  • 4Ng A, Jordan M, Weiss Y. On spectral clustering: Analysis and an algorithm [C]. Advances in Neural Information Processing Systems 14. MA: MIT Press,2001.
  • 5Witten I H, Frank E. Data mining practical: Maehine learning tools and techniques [M], San Francisco: Morgan Kaufmann Publishers, 2005.
  • 6Ding C. A tutorial on spectral clustering [C]. Banff, Alberta, Canada: Proceedings of the Twenty-First International Conference on Maehine Learning, 2004.
  • 7UCI machine learning repository[DB/OL], http://www.ics.uci. edu/-mlearn/MLRepository.html.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部