期刊文献+

手指背关节皮纹识别方法 被引量:2

Method of finger-back articular skin texture recognition
下载PDF
导出
摘要 利用自主设计的采集装置获得手背图像,由Canny算子分割并定位手指背关节皮纹,根据卷积定理,对要测试的两背关节皮纹进行快速配准,以相关分类器作为判据,检验两者是否为同一模式.在小型数据库上的试验表明:手指背关节皮纹识别具有很好的稳定性和可靠性,在等错误拒绝率和等错误接受率情况下,识别准确率初步可高达95.58%. The hand back image is captured by the device made by ourselves. The articular skin texture is segmented and located by utilizing Canny operator. According to convolution theorem, the fast match algorithm of two articular skin textures is given. The correlation classifier is used to judge whether the two articular skin textures are the same pattern. The experiment results on a small database show that the pattern has good reliability and stability and the identify rate is 95.58 percent as FAR equals to FRR.
出处 《山东大学学报(工学版)》 CAS 2006年第1期37-40,50,共5页 Journal of Shandong University(Engineering Science)
基金 国家自然科学基金项目(50171036)
关键词 生物特征识别 CANNY算子 错误拒绝率 错误接受率 biometrics Canny operator false rejection rate false acceptance rate
  • 相关文献

参考文献4

  • 1DAUGMAN J G.High confidence visual recognition of persons by a test of statistical independence[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1993,15(11):1145-1161.
  • 2RAUL SANCHEZ REILLI,CARMEN SANCHEZ AVILA,ANZ GONZALEZ MACROS.Biometric identification through hand geometry measurements[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(10):1168-1171.
  • 3SANCHEZ REILLO R.Hand geometry pattem recognition through Gaussian mixture modeling[A].15th International Conference on Pattern Recognition[C].Barcelona(Spain):IEEE Press,2000.937-940.
  • 4ERIC SUNG,CHEN Xi-lin,ZHU Jie,et al.Towards non-cooperative iris recognition systems[A].Seventh International Conference on Control,Automation Robotics and Vision[C].Singapore:ICARV,2002.990-995.

同被引文献53

  • 1阮秋琦.数字图像处理学[M].北京:电子工业出版社,2007.
  • 2LIU Zhi, YIN Yilong, WANG Hongjun. Finger vein recognition with manifold learning [J]. Journal of Network and Computer Applications, 2010( 33 ) :275-282.
  • 3HASHIMOTO J. Finger vein authentication technology and its feature [C]//Symposium on VSLI Circuits Digest of Technical Papers. Hawaii : VSLI, 2006 : 5-8.
  • 4Naoto Miura, Akio Nagasaka, Takafumi Miyataka. Feature extraction of finger-vein patterns based on repeat line tracking and its application to personal identification [J]. Machine Vision and Application, 2004, 15 (4) :194-203.
  • 5YANG Jinfeng, LI Xu. Efficient finger vein localization and recognition [ C ]//International Conference on Pattern Recognition. Turkey, Istanbul :ICPC,2010 : 1148-1151.
  • 6JAIN A K, CHEN YI, DEMIRKUS M. High-resolution fingerprint matching using level 3 features [ J ]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2007, 29(1) :15-27.
  • 7YANG Jinfeng, YANG Jinli, SHI Yihua. Finger-vein segment based on multi-channel even-symmetric Gabor filters [C]//2009 IEEE International Conference on Intelligent Computing and Intelligent Systems. [ S. L ] : the IEEE Press, 2009, 4:500-503.
  • 8Nurhafizah Mahri, Shahrel Azmin Sundi, Suandi, etal. Finger vein recognition algorithm using phase only correlation [C]//Emerging Techniques and Challenges for Hand-Based Biometrics. Turkey, Istanbul : [s. n. ],2010:1-6.
  • 9MULYONO D, HORNG Shi Jinn. A study of finger vein biometric for personal identification [ C ]//International Symposium on Biometrics and Security Technologies. Pakistan, Islamabad: [ s. n. ], 2008 : 1-8.
  • 10JAIN A K, BOLLE R M, PANKANTI S. Biometrics: personal Identification in a Networked Society[M]. Norwell, MA: Kluwer, 1999 : 103-121.

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部