期刊文献+

混沌实验数据处理及仿真 被引量:3

Chaotic characteristic analysis and simulations in Chau's circuit
下载PDF
导出
摘要 大学物理实验中混沌实验大多采用观察现象的方法进行,本实验采用蔡氏电路(Chua s circuit)产生混沌行为.在观察不同初始值条件下出现的倍周期分岔、阵发混沌、奇异吸引子等相图及现象的基础上,通过对采集数据进行处理,对负电阻伏安特性进行分段线性拟合,用功率频谱法、计算机仿真方法(龙格-库塔数值积分法)对混沌现象进行描绘,将实验数据与非线性方程组的数值解相结合,呈现出混沌现象的本质. Chua's circuit is the simplest circuit, which can become chaotic. The circuit exhibit rich of dynamic phenomenon, it contairis three energy storage elements only. We illustrate the chaotic of the circuit by observe period 1, period 2, single scroll and double scroll chaos attractors, we obtain the chaotic signal by adjusting the parameters of the circuit . Meanwhile we show how to use computer simulate the conclusion of complex dynamic phenomena. We analyze the frequency spectrum with FFT method and simulate the nonlinear equations by using Runge - Kutta method, We also do the curve fitting with least square method. This approach could be use for reference in university experimental study on Chua's circuit.
出处 《大学物理》 北大核心 2006年第2期53-57,共5页 College Physics
关键词 混沌 蔡氏电路 相图 一元线性回归(最小二乘法) 快速傅里叶变换 龙格-库塔方法 chaos Chua's circuit phase portrait least square method FFT Runge - Kutta method
  • 相关文献

参考文献6

二级参考文献18

  • 1[1]Ott E,Grebogi C,Yorke J A.Controlling chaos [J].Phys Rev Lett,1990,64(11):1 196.
  • 2[2]Hunt E R.Stabilizing high-period orbits in a chaotic system:The diode resonator[J].Phys Rev Lett,1991,67(15):1 953.
  • 3[3]Glass L,Zeng W Z.Bifurcations in flat-topped maps and the control of cardiac chaos [J].Int J of Bifur Chaos,1994,4(4):1 061.
  • 4[4]Myneni K,Barr T A,Corron N T,etc.New method for the control of fast chaotic oscillations [J].Phys Rev Lett,1999,83(11):2 175.
  • 5Hand L N,Finch J D. Analytical Mechanics [M].Cambridge: Cambridge University Press, 1998. 292-423.
  • 6Wolf A, Swift J B, Swinney H L, et al. Determining Lyapunov Exponents from a Time Series[J]. Physica, 1985, 16D: 285-317.
  • 7zel'dovich B Ya, Pilipetskii N F, Sukhov A V and Tabiryan N V 1980 JETP Lett. 31 263
  • 8Durbin S D, Arakelian S M and Shen Y R 1981 Opt. Lett. 6 411
  • 9Janossy I and Leuyd A D 1991 Phys. Rev. A 44 8410
  • 10Janossy I 1994 Phys. Rev. E 49 2957

共引文献16

同被引文献21

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部