摘要
口语理解在口语自动翻译和人机对话系统中具有非常重要的作用。本文面向口语自动翻译提出了一种统计和规则相结合的汉语口语理解方法,该方法利用统计方法从训练语料中自动获取语义规则,生成语义分类树,然后利用语义分类树对待解析的汉语句子中与句子浅层语义密切相关的词语进行解析,最后再利用统计理解模型对各个词语的解析结果进行组合,从而获得整个句子的浅层语义领域行为。实验结果表明,该方法具有较高的准确率和鲁棒性,适合应用在限定领域的汉语口语浅层语义理解。
The spoken language understanding is a crucial part in spoken language translation systems and human-machine dialog systems. In this paper, we propose a new approach to spoken Chinese understanding which combines statistical and rule-based methods. In this approach, the semantic classification trees which are built by the semantic rules automatically learned from the training data are, used to disambiguate key words related to the sentences' shallow semantic meaning, and then, a statistical model is used to extract the whole sentence's domain action. The experimental results show that this approach has good performance and is feasible for the restricted domain oriented Chinese spoken language understanding in the shallow semantic level.
出处
《中文信息学报》
CSCD
北大核心
2006年第2期8-15,共8页
Journal of Chinese Information Processing
基金
国家自然科学基金资助(603750186017501260121302)
中国科学院海外学者基金资助(2003-1-1)
关键词
人工智能
自然语言处理
语义分类树
浅层语义分析
口语理解
artificial intelligence
natrual language processing
semantic classification trees
shallow semantic analysis
spoken language understanding language understanding