期刊文献+

A NOTE ON THE SOLUTION TO NEUMANN BOUNDARY VALUE PROBLEM OF SECOND ORDER NONLINEAR DIFFERENTIAL EQUATION 被引量:1

A NOTE ON THE SOLUTION TO NEUMANN BOUNDARY VALUE PROBLEM OF SECOND ORDER NONLINEAR DIFFERENTIAL EQUATION
原文传递
导出
摘要 The author of this paper, by means of the semi-rank theory, establish a new comparative theorem and give the existence of maximal and minimal solutions to Neumann boundary value problems of second order nonlinear differential equation in ordered Banach spaces when the upper and lower solutions in the reversed order of the problem are given. The author of this paper, by means of the semi-rank theory, establish a new comparative theorem and give the existence of maximal and minimal solutions to Neumann boundary value problems of second order nonlinear differential equation in ordered Banach spaces when the upper and lower solutions in the reversed order of the problem are given.
作者 Feng Chun
出处 《Annals of Differential Equations》 2006年第1期27-32,共6页 微分方程年刊(英文版)
关键词 Banach space Neumann boundary problem upper and lower solutions in reversed order Banach space, Neumann boundary problem, upper and lower solutions in reversed order
  • 相关文献

同被引文献12

  • 1梁盛泉.二阶Neumann边值问题的正解[J].甘肃农业大学学报,2007,42(3):122-125. 被引量:3
  • 2Agarwal P R, et al. Positive Solutions of Differential, Difference, and Integral Equations[M]. Boston: Kluwer Academic Publishers, 1999.
  • 3Cabada A, et al. Monotone method for the Neumann problem with low and upper solutions in the reverse order[J]. Applied Mathematics and Computation, 2001, 117(1): 1-14.
  • 4Cabada A, et al. A positive operator approach to the Neumann problem for a second order differential equation[J]. Journal of Mathematical Analysis and Applications, 1996, 204(3): 774-785.
  • 5Cabada A, et al. Liapunov-type inequalities and Neumann boundary value problems at resonance[J]. Mathematical Inequalities and Applications, 2005, 8(3): 459-475.
  • 6Chu J F, et al. Positive solutions of Neumann problems with singularities[J]. Journal of Mathematical Analysis and Applications, 2008, 337(2): 1267-1272.
  • 7Li Y X. On the existence and nonexistence of positive solutions for nonlinear Sturm-LiouviUe boundary value problems[J]. Journal of Mathematical Analysis and Applications, 2005, 304(1): 74-86.
  • 8Sun J P, et al. Multiple positive solutions to second-order Neumann boundary value problems[J]. Applied Mathematics and Computation, 2003, 146(1): 187-194.
  • 9Sun J P, et al. Three positive solutions for second-order Neumann boundary value problems[J]. Applied :Mathematics Letters, 2004, 17(9): 1079-1084.
  • 10Yazidi N. Monotone method for singular Neumann problem[J]. Nonlinear Analysis, 2002, 49(5): 589-602.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部