期刊文献+

双曲正切非线性函数和加均值量化算法对BP神经网络图像压缩处理的影响 被引量:1

Image Compression of BP Neural Network with Hyperbolic Tangent Non-linear Function and Adding Mean Quantization Algorithm
下载PDF
导出
摘要 为了有效改善整个网络神经元的信息处理的特性,采用了双曲正切S形非线性传输函数和加均值量化算法,建立了BP神经网络图像压缩处理系统。由实验分析发现采用双曲正切传输函数的神经网络对图像处理的质量有所改善,并证明了这种传输函数的有效性。在此基础上又采用了加均值量化算法来提高神经网络图像压缩处理的训练速度。经过实验证明这种方法不仅不影响神经网络图像处理的质量而且缩短了网络传输图像的时间,由此证明了所提出算法的可行性。 An image compression and transmission system of BP neural network with hyperbolic tangent non-linear function and adding mean quantization algorithm is presented to improve the information processing ability of neural network. Through applying the hyperbolic tangent non-linear function to experiments, we have found that the image processing quality of BP neural network was improved, and effectiveness of the function was testified. Based on this, we also adopt the adding mean quantization algorithm to improve the neural network training speed of image processing. By analyzing the experiment results, we found that this method not only keeps the image processing quality, but also shortens the whole network transmission time.
出处 《工程图学学报》 CSCD 北大核心 2006年第1期110-115,共6页 Journal of Engineering Graphics
基金 北京大学校长科研基金资助项目
关键词 计算机应用 图像压缩 BP神经网络 双曲正切非线性函数 加均值量化算法 computer application image compression BP neural network hyperbolic tangent non-line function adding mean quantization algorithm
  • 相关文献

参考文献7

  • 1Robert D Dony, Simon Haykin. Neural network approach to image compression [J]. Proceedings of IEEE, 1995, 83(2): 288-303.
  • 2Egmont-Petersen M, Ridder de D, Handels H. Image processing with neural networks a review [J]. Pattern Recognition, 2002, 35: 2279-2301.
  • 3Christopher Cramer. Neural networks for image and video compression: a review [J]. European Journal of Operation Research, 1998, 108: 266-282.
  • 4王雪光,郭艳兵,齐占庆.激活函数对BP网络性能的影响及其仿真研究[J].自动化技术与应用,2002(4):15-17. 被引量:12
  • 5Stometta W, Huberman B A. An improved three-layer back propagation algorithm [A]. In: Proc. 1st Int. Conf.on Neural Networks [C]. 1987, II: 637-643.
  • 6Qiu G, Terrell T J, Varley M R. Improved image compression using backpropagation networks [A]. In:Neural Network Applications and Tools. Workshop on Sept [C]. 1993.73-81.
  • 7Yang Guanglin, Eiji Shimizu. Information compressed and transmitted and reconslructed system of CGH with LOCO-I image processing and Fraunhofer transforming technique [J]. IEEE, Trans. EIS, 2000,120-C (11): 1520-1527.

二级参考文献1

  • 1焦李成.神经网络系统理论[M].西安:西安电子科技大学出版社,1996..

共引文献11

同被引文献8

  • 1杨光临,张丽峰,段晓辉,王道宪,徐安士.JPEG基线算法对BP神经网络图像压缩处理的影响[J].工程图学学报,2005,26(6):83-87. 被引量:1
  • 2DENK T, PARHI K K, CHERKASSKY V. Combining neural networks and the wavelet transform for image compression [ A]. IEEE International Conference on Acoustics, Speech, and Signal Processing [C]. 1993, 1:637-640,
  • 3SAID A, PEARLMAN W A. A new, fast and efficient image codec based on set partitioning in hierarchical trees [ J ]. IEEE Transactions on Circuits and Systems for Video Technology, 1996, 6(3) :243 -250.
  • 4MALLAT S G. Multifrequency channel decompositions of images and wavelet models [ J ]. IEEE Transactions on ASSP, 1989, 37:2091-2110.
  • 5MITCHELL T M. Machine Learning [ M]. Beijing: China Machine Press, 2003 : 104 - 105.
  • 6YANG G L, SHIMIZU E. CGH compressed and transmitted and reconstructed system with JPEG baseline process- ing and fresnel transforming technique [ J ]. IEEJ Trans. EIS, 2001, 121 -C (8) :1326 - 1333.
  • 7YANG G L, SHIMIZU E. Information compressed and transmitted and reconstructed system of CGH with LOCO -I image processing and fraunhofer transforming technique [J]. IEEJ Trans. EIS, 2000, 120-C (11):1520- 1527.
  • 8胡学龙,陆峰.一种基于第二代小波变换的图像压缩方案[J].电子测量与仪器学报,2003,17(4):37-42. 被引量:5

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部