期刊文献+

植物对水溶液中乐果的降解及影响因素分析 被引量:1

Evaluation of dimethoate degradation in water by phytoremediation
下载PDF
导出
摘要 通过气相色谱分析,建立浓度换算标准曲线,研究了三种水生植物水葱、香蒲和石菖蒲对水溶液中乐果的降解效果,并进一步探讨了水葱对乐果降解的动力学过程和各因素对乐果去除的贡献。结果表明,三种植物对乐果去除能力由大到小依次为:水葱,香蒲,石菖蒲。水葱10天内对乐果的去除率为58%,香蒲和石菖蒲组对乐果的去除率分别为39%和33%。乐果的自然降解和挥发、植物吸收和微生物降解作用对乐果去除的贡献率约为:20%、40%、30%。水体的pH升高能够加速乐果的降解,营养盐质量浓度的下降不利于植物去除乐果。 The pudfieation efficiency to dimethoate by three aquatic plants, Scirppus validus、 Typha latifolia and Acorus tatarinowii Schott were studied. The results showed that Scirppus validus performed better in removing dimethoate than Typha latifolia and Acorus tatarinowii. The reduction percentage of dimethoate in Scirppus treatment was 58%. In Typha and Acorus tatarinowii treatments, the reduction percentages were 39% and 33% respectively. The kinetics process research demonstrated that plant uptake contributed about 40% to the total dimethoate removal, while microorganism did about 30%; evaporation and natural degradation did about 20% to the total reduction. The increase of pH of water accelerated degradation of dimethoate and the decrease of nutrients concentration imposed an obstructive effect on phytoremediation.
出处 《生态环境》 CSCD 北大核心 2006年第1期23-26,共4页 Ecology and Environmnet
基金 国家"十五"重大科技项目(2003BA808A17)
关键词 水生植物 植物修复 农药 乐果 动力学 aquatic plants phytoremediation pesticide dimethoate kinetics
  • 相关文献

参考文献13

  • 1夏会龙,吴良欢,陶勤南.有机污染环境的植物修复研究进展[J].应用生态学报,2003,14(3):457-460. 被引量:31
  • 2杨柳春,郑明辉,刘文彬,安凤春,莫汉宏.有机物污染环境的植物修复研究进展[J].环境污染治理技术与设备,2002,3(6):1-7. 被引量:28
  • 3RUBIN E,RAMASWAMI A.The potential for phytoremediation of MTBE[J].Water Research,2001,35 (5):1348-1353.
  • 4GARCINUNO R M,FERNANDEZ-HERNANDO P,CAMARA C.Evaluation of pesticide uptake by Lupinus seeds[J].Water Research,2003,37:3481-3489.
  • 5MCKINLAY R G,KASPEREK K.Observations on decontamination of herbicide-polluted water by marsh plant systems[J].Water Research,1999,33 (2):505-511.
  • 6CEDERGREEN N,SPLIID N H,JENS C.Streibig.Species-specific sensitivity of aquatic macrophytes towards two herbicide[J].Ecotoxicology and Environmental Sagety,2004,58:314-323.
  • 7SRIDHAR SUSARL a,VICTOR F.MEDINA,STEMEN C,et al.McCutcheon.Phytoremediation:An ecological solution to organic chemical contamination[J].Ecological Engineering,2002,18:647-658.
  • 8夏会龙,吴良欢,陶勤南.凤眼莲加速水溶液中马拉硫磷降解[J].中国环境科学,2001,21(6):553-555. 被引量:20
  • 9夏会龙,吴良欢,陶勤南.凤眼莲植物修复水溶液中甲基对硫磷的效果与机理研究[J].环境科学学报,2002,22(3):329-332. 被引量:43
  • 10COYNER A.,GUPTA G.,JONES T.Effect of chlorsulfuron on growth of submerged aquatic macrophytes Potamogeton pectinatus (sago pondweed)[J].Environmental Pollution,2001,111:453-455.

二级参考文献51

  • 1夏会龙,陈宗懋.氯氰菊酯和马拉硫磷农药的水解动力学研究[J].农业环境保护,1989,8(5):1-3. 被引量:8
  • 2周昱,庄无忌.大口径毛细管气相色谱法测定果蔬中15种有机氯农药残留量[J].色谱,1994,12(2):122-123. 被引量:8
  • 3夏会龙,陈宗懋.化学农药在茶树上多种降解因子定量关系的研究[J].植物保护学报,1989,16(2):125-130. 被引量:12
  • 4宋玉芳,孙铁珩,张丽珊.土壤-植物系统中多环芳烃和重金属的行为研究[J].应用生态学报,1995,6(4):417-422. 被引量:25
  • 5周泽江 杨景辉.水葫芦在污水生态处理系统中的作用及其利用途径I.水葫芦的生物特征及环境因子对其生长的影响[J].生态学杂志,1984,(5):36-40.
  • 6周泽江 杨景辉.水葫芦在污水处理系统中的作用及其利用途径I.水葫芦的生物学特征及环境因子对其生长的影响[J].生态学杂志,1984,(5):36-40.
  • 7[1]Aitchison EW, Kelley SL, Alvarez PJJ,et al. 2000. Phytoremediation of 1,4-dioxane by hybrid poplar trees.Water Environ Res,72:313~321
  • 8[2]Bizily SP, Rugh CL, Summers AO,et al.1999. Phytoremediation of methylmercury pollution:Mer B expression Arabidopsis thaliana offers resistance to organomercuries.Proc Nation Acad Sci United States Amer,96:6808~6813
  • 9[3]Briggs GG, Bromilow RH, Evans AA. 1982. Relationship between lipophilicity and root uptake and translacation of non-ionized chemicals by barley.Pestic Sci,13:495~504
  • 10[4]Briggs GG and Bromilow RH. 1983. Relationship between lipophilicity and the distribution of non-ionized chemicals in barley shoots following uptake by the roots.Pestic Sci,14:492~500

共引文献209

同被引文献25

  • 1庄惠生,周璇.改性TiO_2光催化膜的制备及其光催化降解2,4-DCP的研究[J].环境化学,2005,24(6):654-658. 被引量:8
  • 2柯小伟,张丹丹,朱振中,沈志伟.2,4-二氯苯酚的光催化降解[J].江南大学学报(自然科学版),2006,5(5):597-601. 被引量:7
  • 3QUAN X C,SHI H C,ZHANG Y M,et al.Biodegradation of 2,4-dichlorophenol and phenol in an airlift inner-loop bioreactor immobilized with Achromobacter sp[J].Separation and Purification Technology,2004,34:34:97-103.
  • 4TSUJI N,HIROOKA T,NAGASE H,et al.Photosynthesis-dependent removal of 2,4-dichlorophenol by Chlorella fusca var.Vacuolata[J].Biotechnology Letters,2003,25:241-244.
  • 5GOSWAMI M,SHIVARAMAN N,SINGH R P.Kinetics of chlorophenol degradation by benzoate-induced culture of Rhodococcus erythropolis M1[J].World Journal of Microbiology and Biotechnology,2002,18:779-783.
  • 6WANG C C,LEE C M,KUAN C H.Removal of 2,4-dichlorophenol by suspended and immobilized Bacillus insolitus[J].Chemosphere,2000,41:447-452.
  • 7KIM J H,OH K K,LEE S T,et al.Biodegradation of phenol and chlorophenols with defined mixed culture in shake-flasks and a packed bed reactor[J].Process Biochemistry,2002,37:1367-1373.
  • 8JUNG M W,AHN K H,LEE Y,et al.Adsorption characteristics of phenol and chlorophenols on granular activated carbons (GAC)[J].Microchemical Journal.2001,70:123-131.
  • 9KARGI F,EKER S.Toxicity and batch biodegradation kinetics of 2,4-dichlorophenol by pure Pseudomonas putida culture[J].Enzyme and Microbial Technology,2004,35:424-428.
  • 10ALKORTA I,GARBISU C.Phytoremediation of organic contaminants in soils[J].Bioresource Technology,2001,79:273-276.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部