期刊文献+

玉米-花生混作系统中的氮铁营养效应 被引量:11

Effects of maize-peanut mixed cropping on N and Fe nutrition
下载PDF
导出
摘要 采用盆栽试验的方法研究了不同施氮水平和种间相互作用对花生铁营养、根瘤固氮能力以及系统氮营养的影响。结果表明,在本试验种植密度下,施氮水平和种植方式对下针期单株花生生物量无显著影响。在不同施氮水平下,玉米-花生混作不仅均显著改善了花生铁营养,而且玉米对氮素的大量吸收显著降低了混作花生根际土壤硝态氮的质量分数,从而使得花生根瘤数增加,根瘤固氮酶活性增强。混作花生铁营养受混作玉米氮营养及作物发育状况的影响较大,并且下针期花生固氮酶活性受施氮抑制及花生铁营养改善的促进。这说明,根际土壤硝态氮的质量分数的降低和花生铁营养的改善是石灰性土壤上花生固氮能力增强的关键因素,而花生生物固氮作用的增强是该混作系统体现氮营养优势的主要原因。 The pot experiment was conducted to investigate the effects of different N levels and interspecific interaction on biological nitrogen fixation of nodule, Fe nutrition of peanut and N nutrition in maize-peanut mixed cropping system. The results showed that both N levels and planting modes had no obvious effect on dry weight of peanut plant. The visible nodule number and nodule nitrogenase activities per plant peanut were increased significantly in maize/peanut mixed cropping system, which was not only due to the decreasing of NO3-N content in the rhizosphere of mixed peanut as a result of competition by maize for soil N, but also due to the obvious Fe nutrition improvement of mixed cropping peanut under different nitrogen levels. Moreover, Fe nutrition of mixed cropping peanut was related to maize N nutrition and growth stages of crops. Peanut nodule nitrogenase activities in needling stage were enhanced with the improvement of Fe nutrition, but inhibited with N application. Therefore, it was important for the increasing of biological nitrogen fixation of peanut to decrease N content in rhizosphere and to improve Fe nutrition of peanut on calcareous soil, which was the importance way for the N nutrition advantage in maize-peanut mixed cropping system.
出处 《生态环境》 CSCD 北大核心 2006年第1期134-139,共6页 Ecology and Environmnet
基金 国家自然科学基金项目(30170185) 莱阳农学院博士启动基金项目(630426)
关键词 玉米 花生 混作 铁营养 氮营养 固氮酶活性 maize peanut mixed cropping nitrogen nutrition iron nutrition nodule nitrogenase activities
  • 相关文献

参考文献10

二级参考文献22

  • 1左元梅,李晓林,王永歧,曹一平,张福锁.玉米花生间作对花生铁营养的影响[J].植物营养与肥料学报,1997,3(2):153-159. 被引量:46
  • 2[1]Applely CA (1984).Leghaemoglobin and Rhizobium respiration. Annu Rev Plant Physiol, 35: 443 - 478
  • 3[2]Bergersen FJ, Goodchild DJ(1973). Cellular location of leghaemoglobin in soybean root nodules. Aust J Biol Sci, 26: 741-756
  • 4[3]Dakora DF(1991). Effects of pO2 on the formation and status of leghaemoglobin. Plant Physiol, 95:723 -730
  • 5[4]Dakora DF(1995). A functional relationship between leghaemoglobin and nitrogenase based on novel measurements of the proteins in legume root nodules. Ann Bot, 15: 49-54
  • 6[5]O'Hara GW, Dilworth MJ, Boonkerd N(1988). Iron-deficiency specifically limits nodule development in peanut inoculated with Bradyrhizobium sp. New Phytol, 108:51-57
  • 7[6]O'Hara GW(1988). Mineral constraints to nitrogen fixation. Plant Soil, 108: 93-110
  • 8[7]Rai R, Prasad V, Choudhury SK (1984). Iron nutrition and symbiotic N2 fixation of lentil (Lens culinaris) genotypes in calcareous soil. J Plant Nutrition, 7:399-405
  • 9[8]Riley BT, Dilworth MJ (1985). Cobalt requirement for nodule development and function in Lupinus angustifolius L. New Phytol, 100:347-359
  • 10[9]Roessler PG, Nadler KD (1982). Effects of iron deficiency on heme biosynthesis in Rhizobium japonicum. J Bacteriol, 149:1021-1026

共引文献212

同被引文献168

引证文献11

二级引证文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部