期刊文献+

多孔介质中可压缩驱动问题的全离散分裂正定混合元方法 被引量:2

A fully-discrete splitting positive definite mixed element scheme finite for compressible miscible displacement in porous media
下载PDF
导出
摘要 提出了数值模拟多孔介质中可压缩驱动问题的全离散分裂正定混合元方法.引入分裂正定混合有限元方法来求解抛物型的压力方程.混合有限元方程组是对称正定的,并且流函数方程不依赖于压力方程.采用标准的Garlerkin方法来处理对流-扩散型的饱和度方程.给出了此方法的全离散格式,并分析了该全离散格式的收敛性. A miscible displacement of one compressible fluid by another in a porous medium is governed by a nonlinear parabolic system. A new mixed finite element method, in which the mixed element system is symmetric positive definite and the flux equation is separated from pressure equation, is introduced to solve the pressure equation of parabolic type, and a standard Galerkin method is used to treat the convection-diffusion equation of concentration of one of the fluids. A fnlly-discrete scheme is given and the convergence of the scheme is analyzed.
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2006年第1期1-10,共10页 Journal of Shandong University(Natural Science)
基金 教育部博士点基金资助项目(2005042203)
关键词 分裂正定混合元 可压缩流体 全离散格式 收敛性分析 splitting positive definite system displacement of compressible flow fully-discrete scheme convergence analysis
  • 相关文献

参考文献15

  • 1J Douglas Jr. The numerical simulation of miscible displacement[ A]. Computational methods in nonlinear mechanics[ C]. J T Oden (Editor). Amsterdam: North-Holland, 1980.
  • 2J Douglas Jr. Finite difference methods for two-phase incompressible flow in porous media[J]. SIAM J Numer Anal, 1983,20:681-696.
  • 3J Douglas Jr, J E Roberts. Numerical methods for a model for compressible miscible displacement in porous media[J]. Math Comp, 1983,41 : 441 - 459.
  • 4D W Peaceman. Fundamentals of numerical reservoir simulation[ M]. New York: Elsevier, 1977.
  • 5C Johson, V Thomee. Error estimates for some mixed finite element methods for parabolic type problems[J]. RAIRO Anal Numer, 1981,15:41 - 78.
  • 6Yang Danping. A splitting positive definite mixed element method for miscible displacement of compressible flow in porous media[ J]. Numerical Methods for Partial Differential Equations, 2001,17:229 - 249.
  • 7R A Adams. Sobolev spaces[M]. New York: Academic, 1975.
  • 8J L Lions, E Magenes. Non-homogeneous boundary value problems and applications Ⅰ [ M]. Berlin and New York: Springer-Verlag,1972.
  • 9F Breezi, J Douglas Jr, R Duran, et al. Mixed finite elements for second order elliptic problems in three space variables[J]. Numer Math, 1987, 51 : 237 - 250.
  • 10F Breezi, J Douglas Jr, M Fortin, et al. Marini, Efficient rectangular mixed finite elements in two and three space variables[J]. RAIRO Model Math Anal Numer, 1987, 4:581 - 604.

同被引文献4

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部