期刊文献+

关于近似二部图边覆盖染色的一个充分条件 被引量:1

A sufficient condition on the edge covering coloring of nearly bipartite graphs
下载PDF
导出
摘要 设G是一个简单图,其顶点集为V(G)而边集为E(G).S E(G)称为G的一个边覆盖,如果由S导出的子图是G的一个生成子图.G的边覆盖色数χc′(G)是E(G)所能划分成的最大边覆盖数.已知δ-1χc′(G)δ,由此将χc′(G)=δ的图称为CⅠ类图,否则称为CⅡ类图.显然,图的边覆盖染色分类问题是NP-完全的.给出了近似二部图是CⅠ类图的一个充分条件,而且该条件中的下界是最好的. Let G be a simple graph with vertex set V(G) and edge set E(G). A subset S of E(G) is called an edge covering of G if the subgraph induced by S is a spanning subgraph of G. The maximum number of edge coverings which construct a partition of E(G) is called the edge covered chromatic index of G, denoted by X'c (G). It is well known that 8 - 1 ≤X'c (G) ≤δ, then G is called a graph of CⅠ class if X'c (G) = δ, otherwise G is called a graph of C Ⅱ class. It is easy to prove that the problem of deciding whether a given graph is CⅠ class or CⅡ class is NP-complete. A sufficient condition for a nearly bipartite graph to be CⅠ class is given. It is showen that the results are the best possible.
作者 王纪辉
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2006年第1期21-23,共3页 Journal of Shandong University(Natural Science)
基金 国家自然科学基金资助项目(10471078) 山东省自然科学基金资助项目(Y2003A01)
关键词 近似二部图 边覆盖染色 最小度顶点 边覆盖色数 nearly bipartite graph edge covering coloring minimum degree vertex edge covering coloring chromatic index
  • 相关文献

参考文献3

二级参考文献11

  • 1J A Bondy, U S R Murty. Graph theory with applications[M]. New York: Macmillan, 1976.
  • 2E R Scheinerman, Daniel H Ullman. Fractional graph theory[M]. New York: John Wiley and Sons, 1997.
  • 3R P Gupta. On decompositions of a multigraph into spanning subgraphs[J]. Bull Amer Math Soc, 1974, 500 ~ 502.
  • 4A J W Hilton, D de Werra. A sufficient for equitable edge-colouring of simple graphs[J]. Discrete Math, 1994, 128:179 ~ 201.
  • 5R.P. Gupta, Studies in the Theory of Graphs, Thesis, Tata Inst. Fund. Res., Bombay, 1967.
  • 6D. de Werra, A sufficient condition for equitable edge-coloring of simple graphs, Descrete Math.,1994, 128: 179-201.
  • 7R. Edward, Scheinerman and Daniel, Fractional Graph Theory, Johnwiley and Sons, Inc. New York, 1997.
  • 8J. A. Bondy and R.U.S., Graph Theory with Applications, Elsevier, New York, 1976.
  • 9S. Fiorini and R. J. Wilson, Edge-colorings of graphs, Research Notes in Mathematics, 1977, Vol. 16.
  • 10Julius Petersen. Die Theorie der regul?ren graphs[J] 1891,Acta Mathematica(1):193~220

共引文献12

同被引文献4

  • 1ZHANG Zhongfu,LI Jingwen,CHEN Xiang’en,YAO Bing, WANG Wenjie & QIU Pengxiang Institute of Applied Mathematic, Lanzhou Jiaotong University, Lanzhou 730070, China,College of Mathematics and Information Science, Northwest Normal University, Lanzhou 730070, China,College of Information and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.D(β)-vertex-distinguishing total coloring of graphs[J].Science China Mathematics,2006,49(10):1430-1440. 被引量:56
  • 2ZHANG Zhongfu, CHEN Xiang’en, LI Jingwen, YAO Bing, LU Xinzhong & WANG Jianfang College of Mathematics and Information Science, Northwest Normal University, Lanzhou 730070, China,Department of Computer, Lanzhou Normal College, Lanzhou 730070, China,Institute of Applied Mathematics, Lanzhou Jiaotong University, Lanzhou 730070, China,College of Information and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China,Institute of Applied Mathematics, Chinese Academy of Sciences, Beijing 100080, China.On adjacent-vertex-distinguishing total coloring of graphs[J].Science China Mathematics,2005,48(3):289-299. 被引量:175
  • 3Jing-wen Li,Zhong-fu Zhang,Xiang-en Chen,Yi-rong Sun.A Note on Adjacent Strong Edge Coloring of K(n,m)[J].Acta Mathematicae Applicatae Sinica,2006,22(2):273-276. 被引量:13
  • 4吴建良.系列-平行图的列表染色[J].山东大学学报(自然科学版),2000,35(2):144-149. 被引量:6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部