期刊文献+

遗传算法中重要模式及其性质 被引量:4

The Important Schema and Its Properties in Genetic Algorithms
原文传递
导出
摘要 积木块假设是遗传算法的重要理论基础,尽管已经有大量的实践证据支持这一假设,但并没有得到证明.本文通过提出重要模式的概念,讨论它的性质,给出积木块假设的一个特例证明和最优值点唯一的条件,得到一些特殊函数类最优模式的特征. Building-Block Hypothesis is an important theoretical foundation of genettc algorithms . Although there are many practical evidences to support it, it has not been proven. This paper proposes the definition of important schema, discusses the properties of important schema, proves a special example of Building:Block Hypothesis, presents the condition of whether there is only one best solution and gets the characteristic of the best schemata of some special function species.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2006年第1期20-23,共4页 Pattern Recognition and Artificial Intelligence
基金 现代通信国家重点实验室基金(No.51436020203JB0602) 河南省教育厅基金
关键词 遗传算法 积木块假设 模式 重要模式 Genetic Algorithms, Building-Block Hypothesis, Schema, The Important Schema
  • 相关文献

参考文献4

  • 1Bethke A D. Genetic Algorithms as Function Oplimizers. Ph. D Dissertation. Department of Computer and Communication Science, University of Michigan, Ann Arbor, USA, 1981
  • 2Holland J H, Genetic Algorithms and Classifier Systems: Foun dations and Future Directions, In: Proe of the 2nd International Conference on Genetic Algorithms. Hillsdale, USA, 1987,82-89
  • 3Goldberg D E. Simple Genetic Algorithms and the Minimal Deceptive Problem. In:Davis L, ed. Genetic Algorithms and Sim ulated Annealing. London, UK:Pitman Publishing, 1987, 74-88
  • 4刘勇 康立山 等.非数值并行算法-遗传算法[M].北京:科学出版社,2000.1-5.

共引文献12

同被引文献30

  • 1任子武,伞冶.自适应遗传算法的改进及在系统辨识中应用研究[J].系统仿真学报,2006,18(1):41-43. 被引量:169
  • 2Goldberg D E.Genetic Algorithms in Search,Optimization,and Machine Learning[M].MA,USA:Addison Wesley Press,1989.
  • 3BALAS E, NIEHAUS W. Optimized crossover-based genetic algo- rithms for the maximum cardinality and maximumweight clique problems [ J ]. Journal of Heuristics, 1998, 4(2) : 107 - 122.
  • 4STEIN M. Large sample properties of simulations using Latin hypercube sampling [ J ]. Technometrics, 1987, 29(2): 143-151.
  • 5OWEN A B. A central limit theorem for Latin hypercube sampling [J]. Journal of the Royal Statistical Society: B, 1992, 54(2): 541-551.
  • 6NEAL M, STEPNEY S, SMITH R E, et al. Conceptual frameworks for artificial immune systems [ J ]. Journal of Unconventional Computing, 2005, 1(3): 315-318.
  • 7APPLEXGATE D, BIXBY R. Implementing the Dantzig-Fulkerman-Johnson algorithm for large traveling salesman problems [ J ]. Mathematical Programming,2003, 97(1):91-98.
  • 8PATRICK J, XIN L. DROPS: Online traveling salesman problems with flexibility [EB/OL]. [2010 -06 - 13]. http://drops, dags' tuhl. de/opus/volhexte/2009/2172/.
  • 9BLA.SER M, MANTHEY B, SGALL J. An improved approximation algorithm for the asymmetric tsp with strengthened triangle inequality [ J ]. Journal of Discrete Algorithms, 2006, 14(4): 623 - 632.
  • 10TSPLIB[ EI3/OL[. [2010 -06 - 13]. http://www, iwr. uniheidelberg. de/groups/compot/software/TSPLIB95/tsp.

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部