期刊文献+

电力市场短期边际电价的分时重构混沌相空间预测 被引量:23

ELECTRICITY MARKET SHORT-TERM MARGINAL PRICE FORECASTING BASED ON PERIOD CLUSTERING RESTRUCTURING CHAOTIC PHASE SPACE
下载PDF
导出
摘要 为了实现高精度的电力市场短期边际电价预测,该文对市场边际电价时间序列数据分时段聚类进行了相空间重构,并分别计算分形维数和提取最大Lyapunov指数,经分析得出了边际电价分时序列数据的演化具有混沌特征,由此提出了短期边际电价的分时重构混沌相空间预测算法,相比目前通常采用的单一时间序列混沌预测算法,该算法具有相空间嵌入维数少和模型参数配置灵活的特点,通过电力市场短期边际电价预测实例验证,结果表明该算法比单一时序混沌预测算法在预测精度上有显著提高。 This paper addresses the forecasting algorithm of short-term marginal price in electricity market. Phase space of time series marginal price data in electricity market was restructured by period clustering, their fractional correlation dimension and maximum Lyapunov exponent were calculated, and the conclusion that period clustering data of marginal price has chaotic property was deduced. A new model of short-term marginal price forecasting algorithm based on period clustering restructuring chaotic phase space was presented. The algorithm has advantages of less phase space dimension and flexible parameters to compare with the single-time series chaotic forecasting algorithm. Test results for using this algorithm to forecast the short-term marginal price data in actual electricity markets are reported, and show that there is great improvement in forecasting precision.
作者 彭春华
出处 《中国电机工程学报》 EI CSCD 北大核心 2005年第23期80-85,共6页 Proceedings of the CSEE
关键词 电力市场 边际电价 相空间 分时重构 混沌预测 Electricity market Marginal price Phase space Period clustering restructuring Chaotic forecasting
  • 相关文献

参考文献15

二级参考文献74

  • 1阙连元,叶世勋,丁剑明.开放式SCADA/EMS系统支持的在线负荷预测系统[J].电力系统自动化,1993,17(10):16-20. 被引量:8
  • 2梁志珊,陈建华,刘哲.基于人工神经网络的自适应电力系统短期负荷预测[J].东北电力学院学报,1994,14(1):47-51. 被引量:7
  • 3余贻鑫,李国庆,戴宏伟.电力系统电压稳定性的基本理论与方法(四)[J].电力系统自动化,1996,20(9):69-73. 被引量:7
  • 4王东升 曹磊.混沌、分形及其应用[M].合肥:中国科学技术大学出版社,1995..
  • 5焦李成.神经网络应用与实现[M].西安:西安电子科技大学出版社,1995..
  • 6[1]Davison M, Anderson C L, Marcus B. Development of a hybrid model for electrical power spot prices[J]. IEEE Trans on Power System, 2002, 17(2):257-264.
  • 7[2]Nogales F J, Coejejo A.J, Espinola R. Forecasting next-day electricity prices by time series modiels[J]. IEEE Trans on Power System, 2002, 17(2):342-348.
  • 8[3]O'Neill-Carrillo E, Heydt G T, Kostelich E J. Nonlinear deterministic modeling of highly varying loads[J]. IEEE Trans on Power Delivery, 1999,14(2): 537-542.
  • 9[4]Harrison R G, Yu D, Oxley L, et al. Non-linear noise reduction and detecting chaos :some evidence from the S&P Composite Price Index[J]. Mathematics and Computers in Simulation, 1999, 48(6): 497-502.
  • 10[5]Parker T S, Chua L O. Practical numerical algorithms for chantic systems[M], Berlin:Springer Verlag, 1989.

共引文献492

同被引文献342

引证文献23

二级引证文献148

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部