期刊文献+

Apriori算法中频繁项集挖掘实现研究 被引量:16

Realization of Mining Frequent Itemsets Based on Apriori
下载PDF
导出
摘要 在数据挖掘中,关联规则是发现知识的一种有效方法,而频繁项集的挖掘是关联规则中发现强规则的基础,其中连接与剪枝是逐层迭代求解k-项频繁集的核心算法。因此,文中主要介绍了基于连接与剪枝挖掘频繁项集的实现过程,并通过挖掘对传统购物篮数据中的频繁项集进行了验证,结果是一致的。算法的有效性也为进一步挖掘关联规则中的强规则提供了基础。 It is a very efficient tool to find useful knowledge from database by using association rules. In order to find strong rules, it needs to mining frequent itemsets based on Apriori. The algorithms of linking and pruning are building up candidate ( k + 1) - itemsets from k - itemsets recursive in sequenee. The realization of mining frequent itemsets based on linking algorithm and pruning algorithm is introduced in this paper. Through an example, perform validation to discover the frequent itemsets from traditional shopping basket. The strong rules are easily found by the algorithms.
出处 《计算机技术与发展》 2006年第3期58-60,共3页 Computer Technology and Development
基金 安徽省高等学校青年基金资助项目(2004jq172)
关键词 关联规则 频繁项集 支持度 可信度 association rules frequent itemsets support threshold confidence threshold
  • 相关文献

参考文献4

二级参考文献21

  • 1R Agrawal, et al. Mining Association Rules Between Sets of Items in Large Databases[ C ]. Washington: Proceedings of the ACM SIGMOD International Conference Management of Data, 1993. 207-216.
  • 2Han J, Kamber M. Data Mining: Concepts and Technique [ M ]. Beijing: High Education Press,2001. 149-184.
  • 3J Han, J Pei B. Mortazavi-Asl : Frequent Pattern-projected Sequential pattern Mining [ C ]. Proc 2000 Int Conf knowledge Discovery. and Data Mining( KDD' 00 ), Boston, MA ,2000.
  • 4Han J,Jian P,Yiwen Y. Mining Frequent Patterns Without Candidate Generation[ C]. Proceedings of the 2000 ACM SIGMOD International Conference Management of Data. Dallas,2000.1-12.
  • 5Agrawal R, Srikant R. Fast Algorithm for Mining Association Rules[ C]. Proceedings of the 20th lnternation Conference on VLDB, Santiago, 1994. 487 - 499.
  • 6R Agrawal,et al.Mining Association Rules Between Sets of Items in Large Databases[C].Washington:Proceedings of the ACM SIGMOD International Conference Management of Data,1993.207-216.
  • 7Han J,Kamber M.Data Mining:Concepts and Technique[M].Beijing:High Education Press,2001.149-184.
  • 8J Han,J Pei B.Mortazavi-Asl:Frequent Pattern-projected Sequential pattern Mining[C].Proc.2000 Int.Conf.knowledge Discovery and Data Mining(KDD'00),Boston,MA,2000.
  • 9Han J,Jian P,Yiwen Y.Mining Frequent Patterns Without Candidate Generation[C].Proceedings of the 2000 ACM SIGMOD International Conference Management of Data.Dallas,2000.1-12.
  • 10Agrawal R,Srikant R.Fast Algorithm for Mining Association Rules[C].Proceedings of the 20th Internation Conference on VLDB,Santiago,1994.487-499.

共引文献10

同被引文献79

引证文献16

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部