期刊文献+

Web文本分类技术研究及其实现 被引量:5

Research and Implementation of Web Text Classification
下载PDF
导出
摘要 随着Internet的飞速发展,Web文本分类研究已经得到了人们密切的关注,并取得了大量的研究成果。文中讨论了Web文本分类过程中的几个关键技术;针对传统的Web文本分类方法缺乏认知自主性和不能再学习的特点,提出了一种扩展的Web文本分类模型和算法。通过系列实验表明,该算法具有较高的分类精度和查准率。 With the development of Intemet at full speed,the research of Web text classification has already got people's close concem.A large amount of research results have been got. This paper has discussed several key technologies in the course of Web text classification in detail at first; Then directing against the traditional classification algorithm of Web text lack of cngnitive independence and studying again, it proposes an extended Web text classification model and algorithm. Through a series of experiments, can get the result that such algo- rithm has higher classification precision and recall.
出处 《计算机技术与发展》 2006年第3期116-118,共3页 Computer Technology and Development
关键词 WEB文本分类 向量空间模型 特征提取 反馈判定 Web text classification vector space model feature extraction feedback and judge
  • 相关文献

参考文献3

二级参考文献9

  • 1Yang Yiming,ProceedingsoftheSeventeenthInternationalACMSIGIRConferenceonResearchandDevelopme,1994年,12页
  • 2Pawlak Z. Rough Sets. International Journal of Information and Computer Science, 1982, 11(5): 341-356
  • 3Pawlak Z, Grzymla-Busse J. Rough Sets. Communications of the ACM, 1995,38(11):88-95
  • 4Deerwester S, Dumains S, Fumas G, et al. Indexing by Latent Semantic Analysis [J]. Journal of the American Society for Information Science, 1990, 41(6):391-407
  • 5Bao Yongguang, Aoyama S, Du Xiaoyong. A Rough Set-based Hybrid Method to Text Categorization. Second International Conference on Web Information Systems Engineering (WISE′01) Volumel.2002:254-261
  • 6Chouchoulas A, Shen Q. A Rough Set-Based Approach to Text Classification. In 7th International Workshop, RSFDGrC99, Yamaguchi,Japan, 1999:118-129
  • 7黄萱菁,吴立德,石崎洋之,徐国伟.独立于语种的文本分类方法[J].中文信息学报,2000,14(6):1-7. 被引量:52
  • 8刘少辉,董明楷,张海俊,李蓉,史忠植.一种基于向量空间模型的多层次文本分类方法[J].中文信息学报,2002,16(3):8-14. 被引量:75
  • 9秦进,陈笑蓉,汪维家,陆汝占.文本分类中的特征抽取[J].计算机应用,2003,23(2):45-46. 被引量:73

共引文献136

同被引文献23

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部