期刊文献+

计算机辅助孤立性肺结节的良、恶性鉴别诊断 被引量:1

Differential Diagnosis of Benign and Malignant Solitary Pulmonary Nodule with Computer-aided Detection
下载PDF
导出
摘要 目的探讨良、恶性孤立性肺结节(SPN)增强后的形态学特征,为SPN的影像诊断提供依据。方法采用SPN图像处理专用软件,对23例恶性肿瘤患者和22例良性结节患者的增强前后CT扫描图像进行了分析比较。结果良、恶性结节组的强化与非强化比较结果显示差异有显著性(P<0.0001);良、恶性组的不规则强化比较结果显示差异有显著性(P=0.0084);恶性结节组的强化幅度平均为(45.04±26.76)HU,明显高于良性结节组的(15.70±17.84)HU(P=0.033);恶性结节组的最大强化CT值平均为(136.09±41.72)HU,明显高于良性结节组的(60.60±60.27)HU(P=0.007);恶性结节组的强化面积平均为(21.69±21.01)%,良性结节组的强化面积平均为(8.61±10.83)%,两组相比差异无显著性(P=0.203)。结论增强扫描后的强化幅度和最大强化值,以及在形态学上的不规则强化,可作为SPN临床影像诊断的参考依据。 Objective To investigate the morphological features of benign and malignant solitary pulmonary nodules (SPNs) and explore the radiological evidences for the differentiation of SPNs. Methods With SPN Dicom View software, we analyzed and compared images obtained from 23 patients with malignant SPNs and 22 patients with benign SPNs who received CT scanning with or without contrast medium injection. Results The enhancement in malignant SPNs group was significantly higher than in the benign SPNs group ( P 〈 0. 0001 ). The irregular enhancement in malignant SPNs group was significantly higher than in the benign SPNs group (P = 0. 0084 ). The mean range of enhancement was (45.04 ± 26. 76) HU in malignant SPNs group, which was significantly higher than that in the benign SPNs group [ ( 15.70 ± 17.84) HU, P = 0. 033 ]. The mean peak enhancement value was (136. 09 ± 41.72 ) HU in malignant SPNs group, which was significantly higher than in benign SPNs group [ (60. 60 ± 60. 27 ) HU, P = 0. 007 ]. The mean enhancement area was (21.69 ± 21.01 )% in malignant SPNs group and ( 8.61 ± 10. 83 ) % in benign SPNs group ( P = 0. 203 ). Conclusion The enhancement range and peak enhancement value as well as the morphologically irregular enhancement of SPNs may provide useful information in the clinical radiological diagnosis of SPNs.
出处 《中国医学科学院学报》 CAS CSCD 北大核心 2006年第1期64-67,i0011,共5页 Acta Academiae Medicinae Sinicae
基金 上海市科委科技发展基金(014119051)~~
关键词 肺结节 计算机辅助检测 体层摄影术 X线计算机 孤立性肺结节 lung nodule computer-aided detection tomography, X-ray computed solitary pulmonary nodule
  • 相关文献

参考文献8

  • 1Leef JL,Klein JS.The solitary pulmonary nodule.Radiol Clin North Am,2002,40 (1):123-143.
  • 2Yamashita K,Matsunobe S,Tsuda T,etal.Solitary pulmonary nodule:preliminary study of evaluation with incremental dynamic CT.Radiology,1995,194(2):399-405.
  • 3Erasmus JJ,Connolly JE,McAdams HP,etal.Solitary pulmonary nodules:Part Ⅰ.Morphologic evaluation for differentiation of benign and malignant lesions.Radiographics,2000,20(1):43-58.
  • 4Kono M,Adachi S,Kusumoto M,etal.Clinical utility of Gd-DTPA enhanced magetic resonance imaging in lung cancer.J Thorac Imaging,1993,8(1)18-26.
  • 5李相生,肖湘生,李惠民,李成洲,刘士远.孤立性肺结节的CT动态增强模式的诊断价值[J].中国医学计算机成像杂志,2000,6(6):383-385. 被引量:14
  • 6Hartman TE.Radiologic evaluation of the solitary pulmonary nodule.Semin Thorac Cardiovasc Surg,2002,14(3):261-267.
  • 7Swensen SJ,Yamashita K,McCollough CH,etal.Lung nodules:dual-kilovolt peak analysis with CT-multicenter study.Radiology,2001,218(1):300-311.
  • 8Zhao B,Gamsu G,Ginsberg MS,etal.Automatic detection of small lung nodules on CT utilizing a local density maximum algorithm.J Appl Clin Med Phys,2003,4(3):248-260.

二级参考文献2

  • 1赵静,临床放射学杂志,1999年,18卷,402页
  • 2张承惠,实用放射学杂志,1997年,13卷,92页

共引文献13

同被引文献26

  • 1翟伟明,胡成文,张伟宏,牟文斌,赵雁南,贾培发.基于动态自适应体素生长的肺部CT图像3维分割算法[J].中国图象图形学报,2005,10(10):1269-1274. 被引量:11
  • 2聂生东,李雯,许建荣,程杰军.自动分割CT图像中肺实质的方法[J].中国医学影像技术,2006,22(9):1428-1431. 被引量:8
  • 3AWAI K, MURAO K, OZAWA A, et al. Pulmonary nodules at chest CT: effect of computer-aided diagnosis on radioioglsts' detection performance[J]. Radiology, 2004, 230(2) : 347-352.
  • 4GURCAN M N, SAHINER B, PETRICK N, et al. Lung nodule detection on thoracic computed tomography images, preliminary evaluation of a computer-aided diagnosis system [J]. Med Phys, 2002, 29(11):2552-2558.
  • 5PAIK D S, BEAULIEU C F,RUBIN G D, et al. Surface normal overlap: a computer-aided detection algorithm with application to colonic polyps and lung nodules in helical CT [J]. IEEE Trans Med Imag, 2004, 23(6):661-675.
  • 6ARIMURA H, KATSURAGAWA S, SUZUKI K, et al. Computerized scheme for automated detection of lung nodules in low-dose computed tomography images for lung cancer screening[J]. Acad Radiol, 2004, 11(6) :617-629.
  • 7SUZUKI K, ARMATO S G, LI F, et al. Massive training artificial neural network (MTANN) for reduction of false positives in computerized detection of lung nodules in low-dose computed tomography[J]. Med Phys, 2003, 30(7):1602- 1617.
  • 8LEE Y, HARA T, FJUITA H, et al. Automated detection of pulmonary nodules in helical CT images based on an improved template-matching technique[J]. IEEE Trans Med Imag, 2001, 20(7):595-604.
  • 9AWAI K, MURAO K, OZAWA A, et al. Pulmonary nodules at chest CT: effect of computer-aided diagnosis on radiologists' detection performance[J]. Radiology, 2004, 230 (2) : 347-352.
  • 10MCCULLOCH C C, KAUCIC R A, MENDONG P R, et al. Model-based detection of lung nodules in computed tomography exams[J]. Acad Radiol, 2004,11 (3) : 258-266.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部