摘要
将汉字书写过程理解为笔迹能量的空间分布过程,提出了一套有效的计算机笔迹纹理特征分析方法。通过提取分布在不同小波包最好基所对应的频率域中的笔迹能量,一幅汉字笔迹图像可以被压缩为一个含有15个元素的能量测度矢量,再由BP神经网络即可完成对经规范化后的能量测度矢量的正确分类。
Writing can be regarded as the spatial distribution process of handwriting energy. Inspired by this view, a method for analyzing handwriting texture is proposed in the paper. Through extracting handwriting energy in different frequency domains that correspond to different wavelet packet bases, a Chinese character image can be compressed into an energy measure vector of 15 elements. A BP neural networks is designed to learn and classify the results from the combination and standardization of every energy measure vector. Experimental results have confirmed the validity of the proposed method.
出处
《武汉科技大学学报》
CAS
2006年第1期79-82,共4页
Journal of Wuhan University of Science and Technology
关键词
计算机笔迹鉴别
小波包分析
非线性能量测度
computer handwriting identification
wavelet packet analysis
nonlinear energy measure