期刊文献+

反应烧结工艺制备碳纳米管/氮化硅陶瓷基复合材料 被引量:9

CARBON NANOTUBES/SILICON NITRIDE CERAMIC MATRIX COMPOSITES FABRICATED BY REACTION-BONDED PROCESS
下载PDF
导出
摘要 用反应烧结工艺在1550℃制备了碳纳米管(carbon nanotubes,CNTs)/Si3N4陶瓷基复合材料,借助x射线衍射、扫描电镜、透射电镜、标量分析等分析手段,研究了反应烧结CNTs/Si3N4复合材料的物相组成、化学相容性、力学性能及电磁性能。结果表明:反应烧结CNTs/Si3N4复合材料主要由α-Si3N4和β-Si3N4组成,还含有少量的游离硅。CNTs和Si3N4基体之间具有良好的化学相容性。含有1.0%(质量分数)CNTs的反应烧结CNTs/Si3N4复合材料的抗弯强度为280MPa,Vickers硬度为8.2GPa,断裂韧性为2.3MPa·m^1/2,在8~12GHz(X带)具有明显的微波衰减特性,在10GHz处的最大衰减值达7dB,可用作微波吸收材料。 Carbon nanotubes (CNTs)/Si3N4 ceramic matrix composites were prepared at 1 550℃ by reaction-bonded process. The phase compositions, chemical compatibility, mechanical properties, and electromagnetic properties of the composites were investigated by X-ray diffraction, scanning electron microscope, transmission electron microscope, and a scalar measurement system. The results show that the composites consist mainly of α- Si3 N4 and β- Si3 N4 with a trace of unreacted silicon. There is good chemical compatibility between the CNTs and the Si3N4 matrix. The composite with 1.0%(in mass) CNTs has a bending strength of 280 MPa, Vickers hardness of 8.2 GPa, and fracture toughness of 2.3 MPa ·m^1/2. The composite displays microwave attenuation at 8-12 GHz (generally called the X-band). The peak value of the transmission attenuation reaches 7 dB at 10 GHz, indicating that the composites have a potential application in electromagnetic adsorption.
出处 《硅酸盐学报》 EI CAS CSCD 北大核心 2006年第2期133-136,共4页 Journal of The Chinese Ceramic Society
基金 国家自然科学基金(50220160657) 上海市纳米专项资金(0352nm053) 上海市重大项目(04DZ14002)资助项目
关键词 碳纳米管 陶瓷基复合材料 反应烧结 力学性能 电磁性能 微波衰减 carbon nanotubes ceramic matrix composites reaction-bonding mechanical properties electromagnetic properties microwave attenuation microwave attenuation
  • 相关文献

参考文献16

  • 1IIJIMA S.Helical microtubules of graphitic carbon[J].Nature,1991,354(6348):56-58.
  • 2BERNHOLC J,BRENNER D,NARDELLI M B,et al.Mechanical and electrical properties of nanotubes[J].Annu Rev Mater Res,2002,32:347-375.
  • 3TERRONES M.Science and technology of the twenty-first century:synthesis,properties,and applications of carbon nanotubes[J].Annu Rev Mater Res,2003,33:419 -501.
  • 4LEE R S,KIM H J.,FISCHER J E,et al.Conductivity enhancement in single-walled carbon nanotube bundles doped with K and Br[J].Nature,1997,388(6 639):255-257.
  • 5FALVO M R,CLARY G J,TAYLOR R M,et al.Bending and buckling of carbon nanotubes under large strain[J].Nature,1997,389(6 651):582-584.
  • 6WAGNER H D,LOURIE O,FELDMAN Y,et al.Stressinduced fragmentation of multiwall carbon nanotubes in a polymer matrix[J].Appl Phys Lett,1998,72(2):188-190.
  • 7DONG S R,TU J P,ZHANG X B.An investigation of the sliding wear behavior of Cu-matrix composite reinforced by carbon nanotubes[J].Mater Sci Eng A,2001,313 (1-2):83-87.
  • 8NING J W,ZHANG J J,PAN Y B,et al.Fabrication and mechanical properties of SiO2 matrix composites reinforced by carbon nanotube[J].Mater Sci Eng A,2003,357(1 -2):392-396.
  • 9BALAZSI C,KONYA Z,BIRO L P,et al.Preparation and characterization of carbon nanotube reinforced silicon nitride composites[J].Mater Sci Eng C,2003,23(6-8):1 133 -1 137.
  • 10GUO J K,MAO Z Q,BAO C D,et al.Carbon fibre-reinforced silicon nitride composite[J].J Mater Sci,1982,17(12):3 611-3 616.

二级参考文献33

  • 1[1]BISWAS S K,RILEY F L.Gas pressure sintering of silicon nitride powder coated with Al2O3 and TiO2.J Am Ceram Soc,2003,86(2): 212-216.
  • 2[2]PAINTER G S,BECHER P F,SUN E Y.Bond energetics at intergranular interfaces in alumina-doped silicon nitride .J Am Ceram Soc,2002,85(1): 65-67.
  • 3[3]YANG J F,OHJI T,NIIHARA K.Influence of yttria alumina content on sintering behavior and microstructure of silicon nitride ceramics .J Am Ceram Soc,2000,83(8): 2 094-2 096.
  • 4[4]ABE O.Sintering process of Y2O3 and Al2O3-doped Si3N4 .J Mater Sci,1990,25: 4 018-4 026.
  • 5[5]PEJRYD L.Microstructure and mechanical properties of CaO/MgO-doped Si3N4 sintered by hot isostatic pressing .Adv Ceram Mater,1988,3(4): 403-405.
  • 6[6]TANI E,UMEBAYASHI S,KISHI K,et al.Gas-pressure sintering of Si3N4 with concurrent addition of Al2O3 and 5wt% rare-earth oxide: high fracture toughness Si3N4 with fiber-like structure .Am Ceram Soc Bull,1986,65: 1 311-1 317.
  • 7[7]MAZDIYASNI K S,COOKE C M.Consilidation,microstructure,and mechanical properties of Si3N4 doped with rare-earth oxides.J Am Ceram Soc,1974,57: 536-537.
  • 8[9]LEE D D,KANG S J L,PETZOW G,et al.Effect of α to β(β′) phase transition on sintering of silicon nitride ceramics .J Am Ceram Soc,1990,73(3): 767-769.
  • 9[10]LEE D D,KANG S J L,YOON D N.Mechanism of grain growth and α-β′ transformation during liquid phase sintering of β′sialon .J Am Ceram Soc,1988,71(9): 803-806.
  • 10[11]MITOMO M,UENOSONO S.Microstructure development during gas pressure sintering of αsilicon nitride .J Am Ceram Soc,1992,75(1): 103-108.

共引文献13

同被引文献118

引证文献9

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部