摘要
An elliptical Gaussian wave formalism model of a charged-particle beam is proposed by analogy with an elliptical Gaussian light beam. In the paraxial approximation, the charged-particle beam can be described as a whole by a complex radius of curvature in the real space domains. Therefore, the propagation and transform of charged-particle beam passing through a first-order optical system is represented by the ABCD-like law. As an example of the application of this model, the relation between the beam waist and the minimum beam spot at a fixed target is discussed. The result, well matches that from conventional phase space model, and proves that the Gaussian wave formalism model is highly effective and reasonable.
An elliptical Gaussian wave formalism model of a charged-particle beam is proposed by analogy with an elliptical Gaussian light beam. In the paraxial approximation, the charged-particle beam can be described as a whole by a complex radius of curvature in the real space domains. Therefore, the propagation and transform of charged-particle beam passing through a first-order optical system is represented by the ABCD-like law. As an example of the application of this model, the relation between the beam waist and the minimum beam spot at a fixed target is discussed. The result, well matches that from conventional phase space model, and proves that the Gaussian wave formalism model is highly effective and reasonable.