期刊文献+

进化规划-蚁群优化算法的构建并用于化工过程操作优化 被引量:3

Construction of EP-ACO and its application in operation optimization of chemical process
下载PDF
导出
摘要 经典蚁群优化(ACO)算法搜优效率高,但只适用于求解组合优化等离散问题.以搜索最优食物源为目标,并引入进化规划(EP)简洁的进化机制,用以改造ACO,使之适于连续问题.又将蚁群分工为全局和局部蚂蚁,分别引领个体进行全局探索式和局部挖掘式寻优,并在各个体上释放信息素,供蚁群共享,由此继承了ACO正反馈、互激励的优点,并在优进策略的支持下,构建为EPACO算法.经复杂测试函数的优化检验,显示出EPACO适于连续问题,且全局搜优效率高,对高维问题适应性强.将EPACO应用于二甲苯异构化装置的操作优化,取得了良好的效果,与其他方法相比,优越性明显. Ant colony optimizat combinational optimization prob on (ACO) has high optimizing efficiency, but can only be applied to ems. For adapting ACO to continuous optimization problems, the concise evolution mechanism of evolution program (EP) was introduced to reconstruct ACO, in which the objective was to search optimal food source other than the best sequence. The ant colony was divided into global ants and local ants, which guided the individuals to perform global exploratory optimization and local excavating optimization respectively. Ants released pheromone on the individuals, and the pheromone was shared by all ants, which inherited the collective autocatalytic behaviour characterised by positive feedback mechanism of ACO. Under the support of eugenic strategy, the EP ACO algorithm was constructed. The experimentations on optimization of complex functions showed that EP-ACO could be well fit for solving continuous optimization problems with high global optimization efficiency and showed good adaptability to high dimension problems. Finally, EP-ACO was successfully applied to the operation optimization of the equipment of xylene isomerization. The results were better than the referenced methods.
出处 《化工学报》 EI CAS CSCD 北大核心 2005年第12期2361-2366,共6页 CIESC Journal
基金 国家自然科学基金项目(20276063).~~
关键词 蚁群优化 进化规划 信息素 优进策略 二甲苯异构化 ant colony optimization evolution program pheromone eugenic strategy xylene isomerization
  • 相关文献

参考文献11

  • 1李志华,陈德钊,庄凌,胡上序.RBF-MCSR方法用于二甲苯异构化装置的建模[J].化工学报,2002,53(6):627-632. 被引量:8
  • 2HuShangxu(胡上序) ChenDezhao(陈德钊).Analyses and Processing of Observed Data(观测数据的分析与处理)[M].Hangzhou:Zhejiang University Press,1996.167-190.
  • 3Forgel D B.An analysis of evolutionary programming.In:Fogel D B,Atmar W,eds.Proceedings of 1st Annual Conference on Evolutionary Programming.San Diego(CA):Evolutionary Programming Society,1992.43-51
  • 4Dorigo M,Maniezoo V,Colorni A.The ant system:an autocatalytic optimization process.Technical Report 91-016,Dept.of Electronics,Politecnico di Milano,Italy,1991
  • 5Marco Dorigo,Gianni.Di Caro.The ant colony optimization meta-heuristic.In:Corne D,Dorigo M,Glover F.New Ideas in Optimization.UK:McGraw-Hill,1999.11-32
  • 6Stutzle T,Hoos H.MAX-MIN ant system and local search for the traveling salesman problem.Proceedings of the IEEE International Conference on Evolutionary Computation.Indianapolis:1997.309-314
  • 7宋晓峰,陈德钊,胡上序,肖家治,刘福洲.基于优进策略的遗传算法对重油热解模型参数的估计[J].高校化学工程学报,2003,17(4):411-417. 被引量:38
  • 8José A Gámez,José M Puerta.Searching for the best elimination sequence in bayesian networks by using ant colony optimization.Pattern Recognition Letters,2002,23:261-277
  • 9Marco Dorigo,Luca Maria Gambardella.Ant colony system:a cooperative learning approach to the traveling salesman problem.IEEE Transactions on Evolutionary Computation,1997,1(1):53-66
  • 10Rudolf Mathar,Zilinskas A.A class of test functions for global optimization.Journal of Global Optimization,1994(5):195-200

二级参考文献26

  • 1Holland J H. Adaptation in Natural and Artificial System. Ann Arbor: University of Michigan Press, 1975.
  • 2Wooldridge M J, Jennings N R. Intelligent Agent: Theory and Practice. Knowledge Engineering Review, 1995, 10 ( 2 ):115--152.
  • 3Liu Dayou (刘大有), Yang Kun (杨鲲), Chen Jianzhong (陈建中). The Situation and Survey of Agent. Journal of Software (软件学报), 2000, 11 (3): 315--321.
  • 4Jennings N R, Nicholas R, Katia Sycara, Michael Wooldridge.A Roadmap of Agent Research and Development. Autonomous Agents and Multi-Agent Systems, 1998 (1) : 275--306.
  • 5Li Zhihua(李志华), Chen Dezhao(陈德钊), Zhuang Ling (庄凌), Hu Shangxu (胡上序). The RBF-MCSR Approach as a Modeling Technique for the Equipment of Isomerization of Xylene. Journal of Chemical Industry and Engineering(China) (化工学报), 2002, 53 (6): 627--632.
  • 6Russell S, Norvig P. Artificial Intelligence: A Modern Approach. New Jersey: Prentice-Hall, 1995.
  • 7Srinivas M, Patnaik L M. Adaptive Probabilities of Crossover and Mutation in Genetic Algorithms. IEEE Transactions on Systems, Man and Cybernetics, 1994, 24 (4): 656--667.
  • 8Liu Yong (刘勇), Kang Lishan (康立山), Chen Yuping (孙毓屏). Non-number Parallel Algorithm · 2 · Genetic Algorithm(非数值并行算法·第二册·遗传算法). Beijing: Science Press, 1995.
  • 9Schmitt L M. Theory of genetic algorithms [J]. Theoretical Computer Science, 2001,259(1-2): 1-61.
  • 10Vose M D, Rowe J E. Random heuristic search: applications to GAs and functions of unitation [J]. Comput Methods Appl Mech Engrg, 2000, 186(2-4): 195-220.

共引文献46

同被引文献26

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部